[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
544
(1): 132人目の素数さん [sage] 2017/12/25(月) 20:29:29.60 ID:U1NU7yFp(9/12) AAS
>>541
>それなら、Qも閉集合ではないだろ

お前はどこまでバカなんだ?今まで一体なにを読んでいたのだ?

もし Q 自体が閉集合なら、F_1=Q, F_i=φ (i≧2) と置けば終わる話。
しかし、実際には、Q 自体は閉集合ではない。そこはその通り。

ではどうするか?

F_i の作り方を工夫すればいいのである。具体的には、Q の元を適当に番号づけて、
各 q∈Q に対して F_i={q} と置けばいいのである。Q は可算無限集合なので、
このように設定した F_i の個数も可算無限個に収まり、しかも

Q=∪_i F_i, 各 F_i は内点を持たない閉集合

と表せるのだから、例の定理が適用できる形になっているだろうが。
L の場合にこの芸当が不可能なのは、

・ L 自体は閉集合ではないので、F_1=L, F_i=φ (i≧2) という置き方は不可能。
・ F_i の作り方を工夫して、F_i={q} (q∈L) と置くことにすると、今度は L が
 非可算無限集合であるがゆえに、F_i が可算無限個に収まらず、この置き方でも失敗する。

という理由があるからだよ。

結局お前は、F_i を「どのように上手く取ればいいのか」を全然 意識してないから、
そういうトンチンカンな間違いに陥るんだよ。
546
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 21:00:53.16 ID:R/y0B5bE(5/9) AAS
>>542 >>544

どちらのレスでも良いけど・・

話を、区間[0,1]に取って
Q' = {q | 0<q<1 q∈Q} なる集合Q'を考える

Q' は閉集合ではないですか?
もし、Q' が開集合なら、その補集合 [0,1]−Q' (これは区間[0,1]内の無理数の集合と0と1から成る)が閉集合になりますから

どうでしょうか
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s