[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
522
(2): 132人目の素数さん [] 2017/12/25(月) 00:37:44.12 ID:P3YrdrZj(1/4) AAS
>>520
>Fiとして、"一つのカントール集合"を許す?
当然ですよ
>そうすると、”個数”の数え方があいまいになるだろ?
どうして?
カントール集合で``1個''です
>”S ⊆ ∪iFi”で、Sは集合濃度で連続まで許すのか?
当然ですよ
526
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 07:58:39.31 ID:R/y0B5bE(1/9) AAS
>>521-522
>>カントール集合で``1個''です
>”S ⊆ ∪iFi”で、Sは集合濃度で連続まで許すのか?
>当然ですよ

なんだよ(^^
早く言ってくれればよかったのに(^^

でな、下記

リウヴィル数は、非可算集合、実数内で稠密で、ルベーグ測度は 0 であるから、内点を持たない
リウヴィル数の各点は、閉集合だと思うが、それで良いかな?

で、いま問題のRuler Functionでは、リウヴィル数が鬼門で
”not Lipschitzian at the Liouville numbers, for every r > 0”なんだよ

つまり、r→∞にしても、リウヴィル数以外の無理数は、Lipschitzianになるが、at the Liouville numbersではだめだと
で、そうすると、定理1.7 (422 に書いた定理)の反例になってないか?

(>>151)
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB%E6%95%B0
リウヴィル数
(抜粋)
・リウヴィル数全体からなる集合は非可算集合であり、実数内で稠密であるが、1次元ルベーグ測度は 0 である。

http://mathforum.org/kb/message.jspa?messageID=5432910>>35より)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(>>494)
(抜粋)
THEOREM 2: The function f^r is: (B) continuous but not Lipschitzian at the Liouville numbers, for every r > 0;

(>>492
(抜粋)
Using ruler-like functions that "damp-out" quicker
than any power of f gives behavior that one would
expect from the above.

Let w:Z+ --> Z+ be an increasing function that
eventually majorizes every power function. Define
f_w(x) = 0 for x irrational, f_w(0) = 1, and
f_w(p/q) = 1/w(q) where p and q are relatively
prime integers.

** f_w is differentiable on a set whose complement
has Hausdorff dimension zero. Jurek [4] (pp. 24-25)

Interesting, each of the sets of points where these
functions fail to be differentiable is large in the
sense of Baire category.

つづく
552
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 23:45:06.17 ID:R/y0B5bE(7/9) AAS
>>549-550
>以上より、Q' は位相空間 ( (0,1), θ|_{(0,1)} ) において開集合にも閉集合にもなってない。

了解。下記(yahoo)だね
R中に稠密に分散されている場合は、「開集合にも閉集合にもならない」ってことだね
あなたは力があるね〜(^^

連続濃度まで許すということだったが(>>522)、
結局は、稠密にR中に分散されている場合は、
「内点を持たない閉集合の高々可算和で被覆」は、”孤立する1点から成る集合”(>>490)の被覆に戻るわけだ!(^^

ところで・・・・
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13160534703
(抜粋)
delyunoaloveさん2016/6/1600:35:49
有理数空間Qは開かつ閉集合ですか?

ベストアンサーに選ばれた回答
kousaku2038さん 2016/6/1612:21:16
全体が実数Rなら、有理数Qは開でも閉でもない。
普通に考えて開集合でないことは、qを有理数とし、それを含む開区間(q-ε,q+ε)を考えると、この区間には無理数が存在するので、Qに含まれることはない。
閉集合でないことは、√2に収束する有理数列が取れることから、すぐにわかる。
(引用終り)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s