[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
497
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:33:54.26 ID:Q5UHveEY(10/18) AAS
>>496 つづき

で、今回の「(a, b) 上でリプシッツ連続である」に関連する部分のみを、さらに抽出すると

[15] Gerald Arthur Heuer先生

THEOREM 4: The function f^2 is Lipschitzian but not
differentiable at the points of the set
{(1/2)*[m - sqrt(d)]: m is an integer
and there exists an integer n such that
d = m^2 - 4n is positive but not a perfect
square} . [This set is dense in the reals.]

THEOREM 5: If g is a function discontinuous at the
rationals and continuous at the irrationals,
then there is a dense uncountable subset
of the reals at each point of which g fails
to satisfy a Lipschitz condition.

かな?

特に、THEOREM 5 変形トマエ函数(Ruler Function)のような、有理数で不連続、無理数で連続なる函数では、
”there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition.”
だと

だから、(A)”a dense uncountable subset”で、リプシッツ連続は満たさないは、実現できている

では、なぜ、(B)”内点を持たない閉集合の高々可算和”は、実現することができないのか?

[15] Gerald Arthur Heuer先生の(A)と、定理1.7 (422 に書いた定理)の(B)との差!

これを見極めない限り、素人の証明を読んでも仕方が無いと思う

まあ、年末は忙しい

ゆっくりやりましょう(^^

以上
498
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:42:49.93 ID:Q5UHveEY(11/18) AAS
>>497 補足

1)THEOREM 5: If g is a function discontinuous at the rationals and continuous at the irrationals, then there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition.

2)「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」

この二つの比較で、2)の”無理数の点で微分可能”なら、1)THEOREM 5の”continuous at the irrationals”は、満たされる
”there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition.”から、有理点以外で必ず”at each point of which g fails to satisfy a Lipschitz condition”なる(無理)点が存在する
その(無理)点は、微分不能

だから、1)THEOREM 5より、2) 系1.8は、導くことができる

以上
504
(1): 132人目の素数さん [sage] 2017/12/24(日) 17:38:05.69 ID:ThBjkOXn(2/4) AAS
>>497
>だから、(A)”a dense uncountable subset”で、リプシッツ連続は満たさないは、実現できている
>では、なぜ、(B)”内点を持たない閉集合の高々可算和”は、実現することができないのか?
>これを見極めない限り、素人の証明を読んでも仕方が無いと思う

・ なぜ (B) では実現不可能かというと、例の定理に抵触するからだよw

・ なぜ例の定理が成り立つかというと、ベールのカテゴリ定理を使ってるからだよ。

・ ベールのカテゴリ定理に帰着させるために、技術的には1つの補題が必要になり、それが「補題1.5」だよ。

・ 例の定理の証明とは無関係に、(B) で実現不可能な理由をスレ主が独自に探っていっても、
  結局はベールのカテゴリ定理に帰着させるハメになり、例の定理の証明と同じことをするハメになるだろうw

この4項目の見極めで十分だろ。
そろそろ例の証明を読んでみたらどうだね。
506
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 20:59:06.39 ID:Q5UHveEY(12/18) AAS
>>497 関連

無理数で微分可能で、有理数のみ微分不可能という
函数の構成があったので、貼っておく(^^

http://www.mathcounterexamples.net/a-continuous-function-not-differentiable-at-the-rationals-differentiable-elsewhere/
ANALYSIS A CONTINUOUS FUNCTION NOT DIFFERENTIABLE AT THE RATIONALS BUT DIFFERENTIABLE ELSEWHERE NOVEMBER 30, 2014 JEAN-PIERRE MERX Math Counterexamples
(抜粋)
We build here a continuous function of one real variable whose derivative exists on R?Q and doesn’t have a left or right derivative on each point of Q.

As Q is (infinitely) countable, we can find a bijection n→rn from N to Q. We now reuse the function f defined here.
http://www.mathcounterexamples.net/a-differentiable-function-except-at-point-with-bounded-derivative
Recall f main properties:

This proves that hh is differentiable at aa with h′(a)=limn→+∞h′n(a). For a∈Q, we can find p∈N with a=rp.
Following a similar proof than above, the function lp:x→h(x)−up(x) is differentiable at a.
As f does not have left and right derivatives at 00, upup does not have left and right derivatives at a.
finally, the equality h=lp+up implies that hh also does not have left and right derivatives at a.

Conclusion:
the function h is differentiable at all irrational points but does not have left or right derivative at all rational points.
(引用終り)
510: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 21:16:17.46 ID:Q5UHveEY(14/18) AAS
>>507
ID:ndfap2+Cさん、あなたはレベル高そうだから、聞くが

>>497より)
「特に、THEOREM 5 変形トマエ函数(Ruler Function)のような、有理数で不連続、無理数で連続なる函数では、
”there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition.”
だと
だから、(A)”a dense uncountable subset”で、リプシッツ連続は満たさないは、実現できている
では、なぜ、(B)”内点を持たない閉集合の高々可算和”は、実現することができないのか?
[15] Gerald Arthur Heuer先生の(A)と、定理1.7 (422 に書いた定理)の(B)との差!」
の私の疑問点について、あなたの解釈は?

別に分り易く書いてくれとは言わないが

書いてくれたことに、一定の納得がいって、定理1.7(>>489)が、成り立ちそうということが見えれば、証明を読むことはやぶさかではない

だが、反例がありそうな証明を読むことは、特に必要がある場合は別として、私はしない(教科書に載っている、あるいは投稿論文の定理は別として)
540
(1): 132人目の素数さん [sage] 2017/12/25(月) 20:03:05.73 ID:U1NU7yFp(8/12) AAS
さて、スレ主が >>527 などで たびたび引用している

>THEOREM: Let g be continuous and discontinuous on sets
>of points that are each dense in the reals.
>Then g fails to have a derivative on a
>co-meager (residual) set of points. In fact,
>g fails to satisfy a pointwise Lipschitz
>condition, a pointwise Holder condition,
>or even any specified pointwise modulus of
>continuity condition on a co-meager set.

についてもコメントしておく。この定理で扱われている g は、

「ある co-meager set の上で、g は全く pointwise Lipschitz condition を満たさない」

と主張されている。そこで、そのような co-meager set を1つ取って A とでも置いておく。
よって、g は A 上で全く pointwise Lipschitz condition を満たさないことになる。すなわち、

A ⊂ R−B_g

が成り立つことになる。A は co-meager set だったから、R−B_g は例の被覆が絶対に不可能であることが
自動的に従う。よって、このような g は自動的に、例の定理の適用範囲外となる。

特に、スレ主の大好きな f^r 及び f_w は、例の定理の反例に「ならない」ことが確定する。
これにて、スレ主が反例として疑っていた例は悉く壊滅したw

そして、上記の理由は「例の定理を経由しない理由」であるため、スレ主が >>497 で求めていた
「見極め」として十分であろう。これにて、いよいよスレ主は、例の「たった2ページの証明」を
読まなければならなくなった。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s