[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
477
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/23(土) 20:22:50.16 ID:lrnu6EUA(28/31) AAS
>>473

>俺が持ち出した f に対しては、x>0 なる任意の x で Af(x)=+∞ が成り立つので、特に
>(0, +∞) ⊂ R−B_f
>が成り立つ。

なるほど。あんた力あるね。(まあ、ディリクレ函数に類似の範囲だが・・)

では、追加質問で悪いが、

変形トマエ函数

f(x)= 1/q^n (x は既約有理数p/qで、 n = 2), 0 (x は無理数) ではどうやって適用するのか?

各点毎の”内点を持たない閉集合で被覆できる”か否かの判定はどうやるのか?
479
(1): 132人目の素数さん [sage] 2017/12/23(土) 20:53:24.09 ID:ANqzVc/X(10/13) AAS
>>477
>f(x)= 1/q^n (x は既約有理数p/qで、 n = 2), 0 (x は無理数) ではどうやって適用するのか?
>各点毎の”内点を持たない閉集合で被覆できる”か否かの判定はどうやるのか?

知らない。
俺は「どんな f に対しても簡単に判定可能なアルゴリズムを見つけた」と主張しているわけではないからな。

>>478
>lim x→-0 f’(x) =+∞
>lim x→+0 f’(x) =+∞

その2つの式は正しい。だが、B_f とは無関係。お前は未だに何かを勘違いしている。

>これらは、x=0のε近傍(開集合)(0-ε、0+ε)で成り立っていると解すべきと思うけどね
>まあ、これは定義の問題でもあるかも知れないが・・

原点を含む十分小さな開区間 (−ε, ε) の中の任意の点 x で

f'(x)=+∞

が成り立つというのであれば、(−ε, ε) ⊂ R−Bf が成り立つので、
R−Bf は例の被覆が「できない」ことになる。しかし、実際には、x≠0 なら常に

f'(x) = −1/x^2

であり、ゆえに

Af(x) = 1/x^2

であり、ゆえに R−{0} ⊂ Bf であり、ゆえに R−Bf ⊂ {0} であり、
ゆえに、R−Bf は例の被覆が「できる」のである。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s