[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
35(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/14(木) 22:44:02.12 ID:oVKNFyGV(21/22) AAS
>>29
どうも。スレ主です。
ご指摘レスありがとう
ところで、どういう意味かな?
「ぷふ」さんの「確かに有理数で不連続無理数で微分可能な関数は存在しないですね」というのは
>>21に書いてある命題Aのことでしょ
でそれは、前スレ284-285 に有るとおり、上記>>20の証明の前(2006以前)に、プロ数学者が命題Aは得ているよ
(再度引用しておく)
http://mathforum.org/kb/message.jspa?messageID=5432910
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
Using ruler-like functions that "damp-out" quicker
than any power of f gives behavior that one would
expect from the above.
Let w:Z+ --> Z+ be an increasing function that
eventually majorizes every power function. Define
f_w(x) = 0 for x irrational, f_w(0) = 1, and
f_w(p/q) = 1/w(q) where p and q are relatively
prime integers.
** f_w is differentiable on a set whose complement
has Hausdorff dimension zero. Jurek [4] (pp. 24-25)
Interesting, each of the sets of points where these
functions fail to be differentiable is large in the
sense of Baire category.
THEOREM: Let g be continuous and discontinuous on sets
of points that are each dense in the reals.
Then g fails to have a derivative on a
co-meager (residual) set of points. In fact,
g fails to satisfy a pointwise Lipschitz
condition, a pointwise Holder condition,
or even any specified pointwise modulus of
continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)
(引用終り)
36(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/14(木) 22:50:41.31 ID:oVKNFyGV(22/22) AAS
>>35 つづき
で、問題は、>>20の2017/11/20(月) 16:45:28.40 ID:sVbA75bKさんは、
命題Aの別証明を得ようとして
>>20の
”定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ } と置く。
もし R−B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。”
を考えたが、この定理はすごく強力でね
この定理を、仮に”開区間上リプシッツ連続定理”と名付けると
>>21に書いたように
”開区間上リプシッツ連続定理”→系:命題B→系:命題A
ということで、元の命題Aより遙かに強い命題Bをその系として証明できるのだった
つまり、”確かに有理数で不連続無理数で微分可能な関数は存在しないですね”というコメントと、”証明が正しい”というコメントとは、異なると理解しているけど?
「ぷふ」さん、如何ですか?
で、繰返すが、命題Bは、まだプロ数学者は論文として発表していないようで、私の探している範囲で見つかっていない
いま、リプシッツ連続の勉強を兼ねて、命題Bの成否について、テキストや論文がないか、探しているところです(^^
(参考)>>21より
命題B
f:R → R であって、「xがリプシッツ”不”連続な点が加算無限個で稠密に存在し、xがそれ以外でリプシッツ連続」
となるものは存在しない
(引用終り)
以上
71(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/15(金) 23:59:51.61 ID:dUFtnfpO(14/14) AAS
>>35 関連
”Interesting, each of the sets of points where these
functions fail to be differentiable is large in the
sense of Baire category.
THEOREM: Let g be continuous and discontinuous on sets
of points that are each dense in the reals.
Then g fails to have a derivative on a
co-meager (residual) set of points. In fact,
g fails to satisfy a pointwise Lipschitz
condition, a pointwise Holder condition,
or even any specified pointwise modulus of
continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)”
(参考)
https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%BC%E3%83%AB%E7%A9%BA%E9%96%93
ベール空間
定義
ベール空間の詳しい定義は、主にその時々に支配的だった需要と観点に起因して、時代とともに少しずつ変化してきた。まずは、よくある現代的定義を述べ、そのあとベールが与えたオリジナルの定義により近い歴史的定義を挙げる。
現代的定義
位相空間がベール空間であるとは、内部が空であるような閉集合からなる任意の可算族の合併は必ず内部が空になるときに言う。
この定義は以下のように同値な条件で言い換えることもできる。
・可算個の稠密開集合の交わりは必ず稠密になる。
・可算個の疎閉集合の合併の内部は必ず空になる。
・X の可算個の閉集合の合併が内点を持つ限り常に、それら閉集合の中に内点を持つものがある。
つづく
98(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 13:28:10.27 ID:/2xvBEHK(18/58) AAS
>>97 つづき
6.で、”可算無限”は本質だな
例えば、>>81 THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals.
" In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)"
ここで、”on a co-meager set”は、dense(稠密)。(∵ 最初の仮定 ”each dense in the reals”だから)
co-meagerは、非可算濃度(∵ >>72より 「残留的 (residual, comeagre) であるとは、その補集合 X \ A が痩せていることを言う。」
「X において第一類 (first category) または痩せている (meagre) とは、それが可算個の疎集合の和になっていることを言う。」)
(なお>>35 "** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)" も補足しておく。)
7.つまり、かの定理1.7は、ちょうど「”可算無限”リプシッツ”不”連続な点が稠密に分散していることは(数学的に)ありえない」という主張に等価
(「”非可算無限”リプシッツ”不”連続な点が稠密に分散していることは(数学的に)可能」であるにも拘わらず)
で、私スレ主が、疑問に思うのは、「本当に、それ成り立つのか?」ということ
それを、いま調べているのだ
以上
110(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 14:36:58.33 ID:/2xvBEHK(24/58) AAS
>>98 関連
(>>35より、いままでと、重複もあるが、”co-meager”関連引用)
http://mathforum.org/kb/message.jspa?messageID=5432910
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above.
Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function.
Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers.
** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)
Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category.
THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals.
Then g fails to have a derivative on a co-meager (residual) set of points.
In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)
つづく
188: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 13:21:46.94 ID:uVIGteN6(16/26) AAS
>>187 つづき
(>>35より)
http://mathforum.org/kb/message.jspa?messageID=5432910
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
The ruler function f is defined by f(x) = 0 if x is
irrational, f(0) = 1, and f(x) = 1/q^r if x = p/q
where p and q are relatively prime integers with q > 0.
で、指数rで、関数の特性が類別されているだろ(下記)
で、(抜粋)
1)** For each 0 < r < 2, f^r satisfies no pointwise Lipschitz condition. Heuer [15]
2)** For r = 2, f^r is nowhere differentiable and satisfies a pointwise Lipschitz condition on a set that is dense in the reals. Heuer [15]
3)** For r > 2, f^r is differentiable on a set whose intersection with every open interval has Hausdorff dimension 1 - 2/r. Frantz [20]
(引用終り)
以上
491(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:28:55.12 ID:Q5UHveEY(4/18) AAS
>>490 つづき
さて、定理1.7 (422 に書いた定理)のそもそもの目的は、変形トマエ函数(Ruler Function)関連で、
「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」を導くことであった
変形トマエ函数(Ruler Function)関連については、過去スレで取り上げているが、いま一度整理すると
(長いが、あとのために抜粋する)
http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
(注:下記で、f^rなどとして、rの指数による類別をしている)
The ruler function f is defined by f(x) = 0 if x is
irrational, f(0) = 1, and f(x) = 1/q if x = p/q
where p and q are relatively prime integers with q > 0.
It is well-known that f is continuous at each irrational
point and discontinuous at each rational point.
** For each r > 2, f^r is differentiable on a set that
has c many points in every interval.
The results above can be further refined.
** For each 0 < r < 2, f^r satisfies no pointwise
Lipschitz condition. Heuer [15]
** For r = 2, f^r is nowhere differentiable and
satisfies a pointwise Lipschitz condition on
a set that is dense in the reals. Heuer [15]
** For r > 2, f^r is differentiable on a set whose
intersection with every open interval has Hausdorff
dimension 1 - 2/r. Frantz [20]
つづく
526(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 07:58:39.31 ID:R/y0B5bE(1/9) AAS
>>521-522
>>カントール集合で``1個''です
>”S ⊆ ∪iFi”で、Sは集合濃度で連続まで許すのか?
>当然ですよ
なんだよ(^^
早く言ってくれればよかったのに(^^
でな、下記
リウヴィル数は、非可算集合、実数内で稠密で、ルベーグ測度は 0 であるから、内点を持たない
リウヴィル数の各点は、閉集合だと思うが、それで良いかな?
で、いま問題のRuler Functionでは、リウヴィル数が鬼門で
”not Lipschitzian at the Liouville numbers, for every r > 0”なんだよ
つまり、r→∞にしても、リウヴィル数以外の無理数は、Lipschitzianになるが、at the Liouville numbersではだめだと
で、そうすると、定理1.7 (422 に書いた定理)の反例になってないか?
(>>151)
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB%E6%95%B0
リウヴィル数
(抜粋)
・リウヴィル数全体からなる集合は非可算集合であり、実数内で稠密であるが、1次元ルベーグ測度は 0 である。
http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(>>494)
(抜粋)
THEOREM 2: The function f^r is: (B) continuous but not Lipschitzian at the Liouville numbers, for every r > 0;
(>>492)
(抜粋)
Using ruler-like functions that "damp-out" quicker
than any power of f gives behavior that one would
expect from the above.
Let w:Z+ --> Z+ be an increasing function that
eventually majorizes every power function. Define
f_w(x) = 0 for x irrational, f_w(0) = 1, and
f_w(p/q) = 1/w(q) where p and q are relatively
prime integers.
** f_w is differentiable on a set whose complement
has Hausdorff dimension zero. Jurek [4] (pp. 24-25)
Interesting, each of the sets of points where these
functions fail to be differentiable is large in the
sense of Baire category.
つづく
534: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 18:05:46.46 ID:I8rwcj5/(3/3) AAS
>>532
「ぷふ」さん、どうも(^^
>最初からそういう定義なんです
ああ、そうなんですか? 定理を書いた人の話は、最初それに否定的だったように聞いた気がしたが・・。気のせいかな(^^
>その関数の微分可能点が無理数の一部分なのですね?
Yes!
(>>526より)
http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
The ruler function f is defined by f(x) = 0 if x is
irrational, f(0) = 1, and f(x) = 1/q if x = p/q
where p and q are relatively prime integers with q > 0.
(引用終わり)
一つは、この上記f(トマエ関数)をr乗した関数を考えているわけです。なのでYes!(それで、rはいくらでも大きく取れる)
もう一つは、 f(x) = 1/q^rではなく いかなるq^rよりも早く増大する(つまり、いかなる1/q^rよりも早く減少する)関数
w(q) を取って、f(x) = 1/w(q) としましょうということ。でも、無理数点で”g fails to satisfy a pointwise Lipschitz condition”が残ると
ここらは、上記のURLを読んでもらう方が話は早いでしょう
(なお、>>527の”co-meager (residual)”は、ベールの範疇定理の用語と解しています。
”c points”がいまいち分らんですが・・(^^ )
以上
575(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 19:49:19.10 ID:IBTJ7HPw(2/13) AAS
>>572
>無理数で可微分有理数で不連続な関数は存在しないという結論を導けます
ええ、その通りです。なお>>526 の
http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
に、そのような記述があることは、過去なんども紹介しています
>ところでリプシッツ不連続とは?
上記>>574 の定理1.7での Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
に対する補集合 R−Bfが満たすべき性質を、都合上、俗に”リプシッツ不連続”と呼称させて頂きました
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }が、”リプシッツ連続”であること(これの補集合)に対する呼称です
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s