[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
305(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 22:01:35.98 ID:sQLguKoZ(6/7) AAS
>>284
"「3」の関数の場合:
・ x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x=0 のときは、limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ である。
「4」の関数の場合:
・ x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x=0 のときは、limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ である。"
ここ大丈夫か?
「 x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。」をいうために、暗黙に”y<0”としてないか?
「 x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。」をいうために、暗黙に”y>0”としてないか?
yの取り方は、必ずしも、そのよう(”y<0” or”y>0”)には限定されないのでは?
306: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 22:03:07.62 ID:sQLguKoZ(7/7) AAS
>>301
BLACKX ◆jPpg5.obl6 ちゃん、どうも。スレ主です。
レスありがとう
>>303-305を読んでみてね(^^
310(4): 132人目の素数さん [sage] 2017/12/19(火) 22:33:54.19 ID:eFT4s0P8(12/13) AAS
>>305
>ここ大丈夫か?
>「 x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。」をいうために、暗黙に”y<0”としてないか?
>「 x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。」をいうために、暗黙に”y>0”としてないか?
>
>yの取り方は、必ずしも、そのよう(”y<0” or”y>0”)には限定されないのでは?
限定してよい。なぜなら、limsup[y→x] g(y) という量は
「 y を x の十分小さな近傍に限定したものとして考えてもよい」
という性質を持つからだ(つまり、lim[y→x] と似た性質を持っている)。
そして、これは limsup の基本的な性質の1つである。標準的な数学書をめくれば、
この性質(もしくは、これと本質的に同じ記述)が必ず書いてある。
ちなみに、この性質が成立するキモとなるのは、
・ 0<δ_1≦δ_2 ならば sup{ g(y)|0<|y−x|<δ_1} ≦ sup{ g(y)|0<|y−x|<δ_2} が成り立つ
という、δ>0 に関する単調性である。さすがに、この程度のことを
いちいちここで詳しく解説することはしないので、あとは自分で勉強せよ。
312(2): 132人目の素数さん [sage] 2017/12/19(火) 22:51:00.75 ID:eFT4s0P8(13/13) AAS
>>305
ちなみに、「3」「4」の関数は単純な形をしているので、
俺が >>310 で指摘した「 limsup の基本的な性質 」を経由せずとも、直接的に
・ x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
を導くことが可能である。以下で、「3」の関数の場合を書いておく。
なお、「3」の関数とは、f(x)= 0 (x<0), 1 (x≧0) という関数である。
[ x<0 の場合 ]
x<0 なる x を任意に取る。このとき、
sup{ |(f(y)−f(x))/(y−x)| | 0<|y−x|<|x|/2 } = 0 … (1)
が成り立つことを示す。0<|y−x|<|x|/2 なる y を任意に取る。このとき、
y < |x|/2+x < |x|+x = (−x)+x = 0 である。すなわち、y<0 である。
よって、f(x)=0 かつ f(y)=0 となるので、|(f(y)−f(x))/(y−x)|=0 である。
これが 0<|y−x|<|x|/2 なる限り言えるので、確かに (1) が成り立つ。この (1) により、
inf[δ>0] sup{ |(f(y)−f(x))/(y−x)| | 0<|y−x|<δ } = 0
が成り立つことが分かる。すなわち、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 が成り立つ。
[x>0 の場合]
x>0 なる x を任意に取る。上と同じようにして、やはり sup{ |(f(y)−f(x))/(y−x)| | 0<|y−x|<|x|/2 } = 0
が成り立つことが分かる。特に、inf[δ>0] sup{ |(f(y)−f(x))/(y−x)| | 0<|y−x|<δ } = 0
が成り立つ。すなわち、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 が成り立つ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s