[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
269(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 11:02:15.26 ID:GAsyQrs5(7/11) AAS
>>268
知りたいことは
下記
”函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。”
とあるけど
単純に、リプシッツ連続とリプシッツ不連続にも、この(Gδ-集合)と(Fσ-集合)の理論を類推適用してないかな?
で、標準テキストでは、「リプシッツ連続とリプシッツ不連続に、類推適用して良いとなっていない」ように思うが・・
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
関数の不連続点の集合
函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
(引用終わり)
270: 132人目の素数さん [sage] 2017/12/19(火) 11:08:05.38 ID:F1UbN7QE(7/18) AAS
>>269
あのね君、まず>>268の質問に答えろよ
オマエの日本語>>261がまずいから
> ”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”
> が1個の閉集合の場合に標準テキストにあるかどうかを問うているのだが?
こちらはオマエの日本語を一生懸命解釈して
> R-Bfが一点集合{0}になりうるかどうかを聞きたいってこと?
> Rの一点集合{0}が『内点を持たない閉集合の高々可算和で被覆できる』かどうかを聞きたい、ってこと?
って聞いてるんだからさ。このどちらでもないならそもそも質問の日本語がおかしいだろ。
271: 132人目の素数さん [sage] 2017/12/19(火) 11:13:43.31 ID:F1UbN7QE(8/18) AAS
>>269
> ”函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。”
> 理論を類推適用してないかな?
なんでリプシッツ連続の話をしてるのに連続の話になるの?
いままでそんな話おまえ以外にしたか?
304(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 22:00:49.44 ID:sQLguKoZ(5/7) AAS
>>292
>1223487+12039874=13263361
>という計算は君の言う「標準テキスト」には載ってないかもしれないが、プロの数学者に見てもらう必要はない。
>それと同じように、ものすごく簡単なことをやっているのだが、
そうなのかね〜
あなたのお話だと、
なんで、普通の不連続の場合のように(参考 >>269 https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E 不連続性の分類 )
”函数のリプシッツ連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。またリプシッツ不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。”
というような記述が、論文なり標準テキストにないのかな?
あなたの話が正しければ、そういう記述があると思うけどね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.061s*