[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 http://rio2016.5ch.net/test/read.cgi/math/1513201859/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
521: 132人目の素数さん [sage] 2017/12/25(月) 00:05:24.76 ID:BjcfoCpO >>520 > >>517 & >>519 > > 定理の定義を、カントール集合まで拡張しようというのかね? > > ( https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」の証明PDF より) > 「定義1.2 (X,O) は位相空間とする. S ⊆ X は, 高々可算無限個の閉集合Fi ⊆ X が存在して, > 各Fiは内点を持たない, > S ⊆ ∪iFi > が成り立っているとする. このとき,「S は内点を持たない閉集合の高々可算和で被覆できる」と書くことにする.」 > > だったよね? > > Fiとして、"一つのカントール集合"を許す? > > そうすると、”個数”の数え方があいまいになるだろ? > > ”S ⊆ ∪iFi”で、Sは集合濃度で連続まで許すのか? 会話が成り立たないにもホドがあるだろw http://rio2016.5ch.net/test/read.cgi/math/1513201859/521
526: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/25(月) 07:58:39.31 ID:R/y0B5bE >>521-522 >>カントール集合で``1個''です >”S ⊆ ∪iFi”で、Sは集合濃度で連続まで許すのか? >当然ですよ なんだよ(^^ 早く言ってくれればよかったのに(^^ でな、下記 リウヴィル数は、非可算集合、実数内で稠密で、ルベーグ測度は 0 であるから、内点を持たない リウヴィル数の各点は、閉集合だと思うが、それで良いかな? で、いま問題のRuler Functionでは、リウヴィル数が鬼門で ”not Lipschitzian at the Liouville numbers, for every r > 0”なんだよ つまり、r→∞にしても、リウヴィル数以外の無理数は、Lipschitzianになるが、at the Liouville numbersではだめだと で、そうすると、定理1.7 (422 に書いた定理)の反例になってないか? (>>151) https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB%E6%95%B0 リウヴィル数 (抜粋) ・リウヴィル数全体からなる集合は非可算集合であり、実数内で稠密であるが、1次元ルベーグ測度は 0 である。 http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より) Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007 (>>494) (抜粋) THEOREM 2: The function f^r is: (B) continuous but not Lipschitzian at the Liouville numbers, for every r > 0; (>>492) (抜粋) Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above. Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function. Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers. ** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25) Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category. つづく http://rio2016.5ch.net/test/read.cgi/math/1513201859/526
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s