[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 http://rio2016.5ch.net/test/read.cgi/math/1513201859/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
493: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:30:23.82 ID:Q5UHveEY >>492 つづき --------------------------------------------------------------- [4] Bohus Jurek, "Sur la derivabilite des fonctions a variation bornee", Casopis Pro Pestovani Matematiky a Fysiky 65 (1935), 8-27. [Zbl 13.00704; JFM 61.1115.01] It appears that Jurek proves some general results concerning the zero Hausdorff h-measure of sets of non-differentiability for bounded variation functions such that the sum of the h-values of the countably many jump discontinuities is finite (special case: h(t) = t^r for a fixed 0 < r < 1). General "h-versions" of the ruler function seem to appear as examples, and V. Jarnik's more precise results about the Hausdorff dimension of Liouville-like Diophantine approximation results are used. This paper is on the internet at http://dz-srv1.sub.uni-goettingen.de/cache/toc/D98714.html http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?ht=VIEW&did=D98723 つづく http://rio2016.5ch.net/test/read.cgi/math/1513201859/493
494: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:30:54.63 ID:Q5UHveEY >>493 つづき --------------------------------------------------------------- [15] Gerald Arthur Heuer, "Functions continuous at the irrationals and discontinuous at the rationals", American Mathematical Monthly 72 #4 (April 1965), 370-373. [MR 31 #3550; Zbl 131.29201] Let f(x) = 0 if x is irrational, f(p/q) = |1/q| if p and q are relatively prime integers, and f(0) = 1. We say that a function g is Lipschitzian at x if there exists a neighborhood U of x and a number M > 0 such that |g(x) - g(y)| <= M*|x - y| for all y in U. THEOREM 2: The function f^r is: (A) discontinuous at the rationals for every r > 0; (B) continuous but not Lipschitzian at the Liouville numbers, for every r > 0; (C) differentiable at every irrational algebraic number of degree <= r-1, if r > 3. THEOREM 3: The function f^r is differentiable at every algebraic irrational number if r > 2 (and, by Theorem 1, at none if r <= 2). THEOREM 4: The function f^2 is Lipschitzian but not differentiable at the points of the set {(1/2)*[m - sqrt(d)]: m is an integer and there exists an integer n such that d = m^2 - 4n is positive but not a perfect square} . [This set is dense in the reals.] THEOREM 5: If g is a function discontinuous at the rationals and continuous at the irrationals, then there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition. つづく http://rio2016.5ch.net/test/read.cgi/math/1513201859/494
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s