[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 http://rio2016.5ch.net/test/read.cgi/math/1513201859/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
491: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:28:55.12 ID:Q5UHveEY >>490 つづき さて、定理1.7 (422 に書いた定理)のそもそもの目的は、変形トマエ函数(Ruler Function)関連で、 「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」を導くことであった 変形トマエ函数(Ruler Function)関連については、過去スレで取り上げているが、いま一度整理すると (長いが、あとのために抜粋する) http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より) Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007 (抜粋) (注:下記で、f^rなどとして、rの指数による類別をしている) The ruler function f is defined by f(x) = 0 if x is irrational, f(0) = 1, and f(x) = 1/q if x = p/q where p and q are relatively prime integers with q > 0. It is well-known that f is continuous at each irrational point and discontinuous at each rational point. ** For each r > 2, f^r is differentiable on a set that has c many points in every interval. The results above can be further refined. ** For each 0 < r < 2, f^r satisfies no pointwise Lipschitz condition. Heuer [15] ** For r = 2, f^r is nowhere differentiable and satisfies a pointwise Lipschitz condition on a set that is dense in the reals. Heuer [15] ** For r > 2, f^r is differentiable on a set whose intersection with every open interval has Hausdorff dimension 1 - 2/r. Frantz [20] つづく http://rio2016.5ch.net/test/read.cgi/math/1513201859/491
492: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:29:35.07 ID:Q5UHveEY >>491 つづき Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above. Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function. Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers. ** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25) Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category. THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals. Then g fails to have a derivative on a co-meager (residual) set of points. In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set. (Each co-meager set has c points in every interval.) つづく http://rio2016.5ch.net/test/read.cgi/math/1513201859/492
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s