[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 http://rio2016.5ch.net/test/read.cgi/math/1513201859/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
203: 132人目の素数さん [] 2017/12/17(日) 17:11:42.76 ID:vYfx1iwu スレ主 国語 国語 http://rio2016.5ch.net/test/read.cgi/math/1513201859/203
206: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 19:08:53.20 ID:uVIGteN6 >>201-205 笑える みんな、逃げ口上と言い訳は、上手いね 要は 1.もし、>>168が正しいなら、1点のリプシッツ”不”連続点となる関数は存在して、当然、”ある区間(a, b) 上でリプシッツ連続である”は言える。 2.有限個のリプシッツ”不”連続点となる関数も存在して、これまた、”ある区間(a, b) 上でリプシッツ連続である”は言える。 3.そして、非可算無限個のリプシッツ”不”連続点で、実数直線R中にそれが稠密に分散している関数は存在して、これは>>110-113に記されている。 この場合”ある区間(a, b) 上でリプシッツ連続である”は言えない。∵リプシッツ”不”連続点が、稠密に分散しているから 但し、「非可算無限個のリプシッツ”不”連続点」だから、>>155の”定理1.7 (422 に書いた定理)”の条件「内点を持たない閉集合の高々可算和で被覆できる」に合わないので、存在しても反例にはならない。 4.では、可算無限個のリプシッツ”不”連続点で、実数直線R中にそれが稠密に分散している関数は存在しえるのか? もし、存在し得るなら、”定理1.7 (422 に書いた定理)”の反例となるが、 ”定理1.7 (422 に書いた定理)”が、正しいとすると、”可算無限個のリプシッツ”不”連続点で、実数直線R中にそれが稠密に分散している関数は存在しえない”となる 5.問題は、なぜ、”可算無限個のリプシッツ”不”連続点で、実数直線R中にそれが稠密に分散している関数は存在しえない”のか? 非可算無限個で稠密なら可能なのに。有限個でも可能なのに。 その中間たる”可算無限個”では、なぜ存在しえないのか? ということ。 だれか、教えて(^^ http://rio2016.5ch.net/test/read.cgi/math/1513201859/206
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s