[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
560: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 11:48:11.80 ID:oeOow6Ma(1/5) AAS
>>555
「ぷふ」さん、どうもスレ主です。
レスありがとう
開でなければ閉と誤解してましたね(^^
これ>>552ですね
561(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 11:51:57.60 ID:oeOow6Ma(2/5) AAS
>>557
「ぷふ」さん、どうもスレ主です。
レスありがとう
ちょっと質問して良いですか?
(>>303より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.
(以下証明の文言から)
よって、 f は(a, b) 上でリプシッツ連続である.”
1.ここで場合分けをする
1)補集合R−Bfが、R中で稠密で無い場合:この場合は、どこかにBfを満たす区間(a, b)が取れる(べき)。そして、条件Bfが成り立つならば、リプシッツ連続である
2)補集合R−Bfが、R中で稠密である場合:この場合は、どこにもBfを満たす区間(a, b)は、取れない。
3)上記場合分けにおいて1)2)とも、ほぼ自明。1)2)とも、証明の必要がない。だから、定理1.7は、証明の必要がない自明なことしか言っていない
つづく
562(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 11:58:51.44 ID:oeOow6Ma(3/5) AAS
>>561 つづき
2.で、「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」(>>498)
(その証明(>>513)より)
「定理1.7 のBf について,
略
(1) の右辺は内点を持たない閉集合の可算和である.
略
f は(a, b) の上で連続である (2)
略
(2) より,f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ.」
この証明中で、そもそも、有理数の点 x ∈ Qは、Rで稠密であるから、”f は(a, b) の上で連続である”の不成立は、当然(リプシッツ連続も含め)(∵稠密な有理点で不連続ゆえ)
なので、定理1.7による必要もなく、もともとこれ(”連続である(a, b)が取れない”)は自明。
そして、この背理法による論法もおかしい。
例えば、>>554に示したように、”無理数で可微分、dense(稠密)な有理点のみ微分不可の函数は構成あり”(>>506)で、
この背理法の論法が正しいならば、「微分可能なある区間(a, b)が取れないから(取れるとすると矛盾するから)、このような関数は存在しない」という結論が、導かれてしまう(本来有理点は稠密であるから、この背理法の論法自身がおかしい)
3.で、要は、定理1.7と系1.8とにおいて、”dense(稠密)”という意識が、あまりに希薄になってしまっているように思うのですが・・?
如何ですかね?
以上
567(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 13:49:33.95 ID:oeOow6Ma(4/5) AAS
>>564
「ぷふ」さん、どうもスレ主です。
早速のレスありがとう(^^
>可算集合の補集合で微分可能→ある開区間で連続
ここを詳しく書くと
A:稠密可算集合Q(有理数)で不連続で、その補集合(無理数)で微分可能→B:(ある条件を満たせば、必ず(例え補集合が不連続であってかつ稠密であっても))ある開区間で連続(命題Aは”ある条件を満たす”)→矛盾
というわけですね
だが、命題「B:(ある条件を満たせば、必ず(例え補集合が不連続であり(定理1.7 ではリプシッツ不連続だが)かつ稠密であっても))ある開区間で連続」で、
キモは、”例え補集合が不連続であり(定理1.7 ではリプシッツ不連続)かつ稠密であっても”ってところが、証明できちんと言えているかどうかですよね
そういう目で、証明を見て行かないと、すら〜と流してしまうと、ギャップがあっても見えない
「ぷふ」さんの目で見て、そこはどうなんですかね?
568(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 13:51:56.73 ID:oeOow6Ma(5/5) AAS
>>565-566
>その関数は連続関数なのでは?それに微分可能な区間が取れないということからはそのような関数の存在も許されないとは言えないということしか言えませんよ
いや、もちろん連続関数です。
”無理数で可微分、dense(稠密)な有理点のみ微分不可の函数は構成可能”
↓
では、”無理数で可微分、dense(稠密)な有理点のみリプシッツ不連続(あるいはディニ微分不可)の函数は構成可能”か?
例の定理1.7は、これを”構成不能”と証明したということですか?
(なんで、だれもいままで気づかなかった? 本当に”構成不能”が成り立っている? 新定理? どう思いますか? )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s