[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
23
(2): 132人目の素数さん [sage] 2017/12/14(木) 18:22:52.76 ID:JQcHE8p2(1/5) AAS
おっちゃんです。
もっと簡単に ε-δ で示せそうですな。

[第1段]:区間Iで定義された有理数で不連続、無理数で連続な実関数 f(x) が存在するとする。
Iの有理数aを任意に取る。実関数 f(x) は x=a で不連続だから、或るεが存在して、εに対して正の実数 δ(ε) が定まって、
|a−b|<δ(ε) であって |f(a)−f(b)|≧ε を満たすようなIの点bが存在する。
S_1={ c∈I | cは無理数で、|c−a|<δ(ε) }、S_2={ c∈I | cは無理数で、|c−b|<δ(ε) } とおく。
すると、区間Iは連結な実数直線Rの部分空間だから、無理数の稠密性から、
max(|c−a|, |c−b|)<δ(ε) なるIの無理数cが存在し、(S_1)∩(S_2)≠Φ。
有理数の稠密性から、0<d<ε なる有理数dが存在して、0<d/2<ε/2。A=d/2 とおく。
24
(2): 132人目の素数さん [sage] 2017/12/14(木) 18:25:40.80 ID:JQcHE8p2(2/5) AAS
[第2段]:i=1,2 を任意に取る。iに対して点 c∈(S_1)∩(S_2) を任意に取る。
実関数 f(x) はIの無理数cで連続だから、Aに対して或る正の実数 δ'(A) が定まって、
M=δ'(A) とおくと、|c−x|<M のとき |f(c)−f(x)|<A となる。
|c−x_{i,1}|<M なるIの点 x_{i,1} を適当に取り、
|f(c)−f(x_{i,1})|<ε_{i,1}<A を満たす正の実数 ε_{i,1} を任意に取る。
2以上の正整数nを任意に取る。同様に、|c−x_{i,n}|<M なるIの点 x_{i,n} を適当に取り、
|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,1} を満たす正の実数 ε_{i,n} を任意に取る。
同様に、|c−x_{i,n+1}|<M なるIの点 x_{i,n+1} を適当に取り、
|f(c)−f(x_{i,n+1})|<ε_{i,n+1}<ε_{i,n} を満たす正の実数 ε_{i,n+1} を任意に取る。
2以上の正整数nは任意であるから、nについて帰納的に考えると、任意の2以上の正整数nに対して
次の条件をすべて同時に満たすようなIの実数 x_{i,n}, x_{i,(n+1)} と正の実数 ε_{i,n}, ε_{i,(n±1)} が存在する:
?@):|c−x_{i,n}|<M、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,(n-1)}、
?A):|c−x_{i,(n+1)}|<M、|f(c)−f(x_{i,(n+1)})|<ε_{i,(n+1)}<ε_{i,n}。
ここに、|c−x_{i,1}|<M、|f(c)−f(x_{i,1})|<ε_{i,1}<A。
このとき構成された正の実数列 { ε_{i,n} } は単調減少である。{ ε_{i,n} } は下に有界で、
任意の正整数nに対して ε_{i,n}, x_{i,n} は |f(c)−f(x_{i,n})|<ε_{i,n} を満たすから、
iに対して或る非負実数 μ_i が存在して { ε_{i,n} } は μ_i に収束し、
任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}。
iに対して (S_1)∩(S_2) の点 c が任意に取れて、i=1,2 は任意だったから、各 i=1,2 に対して、点 c∈(S_1)∩(S_2) を任意に取れば、
すべての正整数nについて条件 |c−x_{i,n}|<M を満たすようなIの点列 { x_{i,n} } が任意に取れて、
更にiに対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、
{ ε_{i,n} } は μ_i に収束し、任意の正整数nに対して μ_i≦|f(c_i)−f(x_{i,n})|<ε_{i,n}<A=d/2 となる。
25
(2): 132人目の素数さん [sage] 2017/12/14(木) 18:32:53.52 ID:JQcHE8p2(3/5) AAS
[第3段]:無理数 c_1∈(S_1)∩(S_2) を任意に取る。A=d/2 となって |f(a)−f(b)|≧ε>d=2A となることに着目し、三角不等式に注意すると、
任意に、すべての正整数nについて条件 |c_1−x_{1,n}|<M を満たし、かつ或る正整数 m'_1 に対して x_{1, m'_1}=a であり、
すべての n≠m'_1 なる正整数nに対して x_{1,n}≠b となるようなIの点列 { x_{1,n} } が取れる。
そして、正の単調減少列 { ε_{1,n} }、及び或る非負実数 μ_1 がそれぞれ定まって、{ ε_{1,n} } は μ_1 に収束し、
このとき任意の正整数nに対して μ_1≦|f(c_1)−f(x_{1,n})|<ε_{1,n}<A となる。
同様に、無理数 c_2∈(S_1)∩(S_2) を任意に取れば、任意に、すべての正整数nについて条件 |c_2−x_{2,n}|<M を満たし、
かつ或る正整数 m'_2 に対して x_{2, m'_2}=b であり、すべての n≠m'_2 なる正整数nに対して x_{2,n}≠a となるような
Iの点列 { x_{2,n} } が取れる。そして、正の単調減少列 { ε_{2,n} }、及び或る非負実数 μ_2 がそれぞれ定まって、
{ ε_{2,n} } は μ_2 に収束し、このとき任意の正整数nに対して μ_2≦|f(c_2)−f(x_{2,n})|<ε_{2,n}<A となる。
[第4段]:従って、c_1=c_2 として、点 c∈(S_1)∩(S_2) を任意に取れば、任意に、すべての正整数nについて条件 |c−x_{1,n}|<M を満たし、
かつ或る正整数 m_1 に対して x_{1, m_1}=a であり、すべての n≠m_1 なる正整数nに対して x_{1,n}≠b となるような
Iの点列 { x_{1,n} } が取れる。更に、任意に、すべての正整数nについて条件 |c−x_{2,n}|<M を満たし、
かつ或る正整数 m_2 に対して x_{2, m_2}=b であり、すべての n≠m_2 なる正整数nに対して x_{2,n}≠a となるような
Iの点列 { x_{2,n} } が取れる。そして、各 i=1,2 に対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、
{ ε_{i,n} } は μ_i に収束し、このとき任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}<A となる。
27
(2): 132人目の素数さん [sage] 2017/12/14(木) 18:35:41.37 ID:JQcHE8p2(4/5) AAS
[第5段]:=1,n=m_1 とすると、x_{1,m_1}=a から |c−a|<M であって、|f(c)−f(a)|<A=d/2。
同様に、i=2,n=m_2 とすると、x_{2,m_2}=b から |c−b|<M であって、|f(c)−f(b)|<A=d/2。
従って、三角不等式から、|a−b|≦|a−c|+|c−b|<M+M=2M、|f(a)−f(b)|≦|f(a)−f(c)|+|f(c)−f(b)|<d/2+d/2=d。
d/2 に対して定まる正の実数 δ(d/2) を δ(d/2)=2M とおけば、|a−b|<δ(d/2) であって |f(a)−f(b)|<d<ε、
故に、εに対して定まる正の実数 δ(ε) を δ(ε)=δ(d/2) とおけば、|a−b|<δ(ε) であって |f(a)−f(b)|<ε。
しかし、これは |f(a)−f(b)|≧ε なることに反し矛盾する。
背理法が適用出来るから、区間Iで定義された有理数で不連続、無理数で連続な実関数 f(x) は存在しない。
28
(1): 132人目の素数さん [sage] 2017/12/14(木) 18:39:03.61 ID:JQcHE8p2(5/5) AAS
>>27>>25の続き。

>>26
そもそも、区間Iで定義された有理数で不連続、無理数で連続な実関数 f(x) が存在しない。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.028s