[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
260: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 09:41:20.76 ID:GAsyQrs5(1/11) AAS
>>237 訂正

ビックカメラ
 ↓
ビックリカメラ
 ↓
ドッキリカメラ

かな?
(^^
261
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 09:49:31.92 ID:GAsyQrs5(2/11) AAS
>>257-258

どなたかな?
定理の本人じゃないと?

単純に
定理の条件
”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”
が1個の閉集合の場合に標準テキストにあるかどうかを問うているのだが?

なんか、ごまかしてないか?
262
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 10:33:47.30 ID:GAsyQrs5(3/11) AAS
>>258
>率直に言って、君は数学に向いてないぞ

小利口にわけわからん理屈で、簡単に丸め込まれるより、きちんとロジックの筋を通す方が、数学的だと思うけどね
もちろん、大部の本で「取りあえず飲み込んで先に進む」という勉強法も必要だと思うが
いまの場合、飲み込んで先に進んでも何もないだろう

> 2)Rの一点部分集合{0}やQが『内点を持たない閉集合で被覆できる』ことが分からないのか?(呆)

論理のすり替え
単なる一点部分集合ではない

未定義だが、一か所という言葉を使う
一か所リプシッツ不連続点x=0を持つ階段関数とかが、その箇所を『内点を持たない閉集合で被覆できる』と言えるかどうかが、問題だ
264
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 10:40:57.04 ID:GAsyQrs5(4/11) AAS
>>257
>「 f が点xにおいて limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ を満たすとき、f は一点xにおいてリプシッツ連続であ>る」
>という定義を採用するのが自然だと思われる。

その定義なら、補集合は開集合にならないか?
266
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 10:43:26.47 ID:GAsyQrs5(5/11) AAS
>>263
>R-Bfが一点集合{0}やQなら

これの証明が標準テキストにあかどうかだ
それを聞きたい
267: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 10:44:59.21 ID:GAsyQrs5(6/11) AAS
>>266 訂正

これの証明が標準テキストにあかどうかだ
 ↓
これの証明が標準テキストにあるかどうかだ
269
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 11:02:15.26 ID:GAsyQrs5(7/11) AAS
>>268

知りたいことは
下記
”函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。”
とあるけど

単純に、リプシッツ連続とリプシッツ不連続にも、この(Gδ-集合)と(Fσ-集合)の理論を類推適用してないかな?
で、標準テキストでは、「リプシッツ連続とリプシッツ不連続に、類推適用して良いとなっていない」ように思うが・・

https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
関数の不連続点の集合
函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
(引用終わり)
274
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 14:52:44.06 ID:GAsyQrs5(8/11) AAS
>>273

>一か所リプシッツ不連続点だろうが微分不可能点だろうがそれがRの一点部分集合{0}なら疎な閉集合{0}で被覆できるだろ。

>>252に定義があるだろ?
下記

>「 limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ が成り立つとき、f は一点 x でリプシッツ連続であるという 」
>「 limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ が成り立つとき、f は一点 x でリプシッツ不連続であるという 」
>
>……というのが、一点でのリプシッツ連続・不連続の定義である。この定義に当てはめて考え直してみよ。

”limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ が成り立つ”では、
+∞への発散は、イブシロンデルタを使うのが本当だと思うよ

そうすると、イブシロンデルタの範囲では、決してyとxは、一点に重ならない
だから、一点部分集合{0}とは言えないだろう

イブシロンデルタの範囲では、ε近傍(開集合)で被覆できるとすべきじゃないのかね?
275
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 14:55:39.13 ID:GAsyQrs5(9/11) AAS
だから、標準テキストでは、そこはどうなっているのかと
276: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 15:02:34.05 ID:GAsyQrs5(10/11) AAS
まあ、念のため

http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/MetricSpace/neighborhoodR1.htm
R上の近傍概念と、そのバリエーション 
(抜粋)
・「R上の点aのε近傍」とは、《点aからの距離がε以内の点》をすべてあつめた《Rの部分集合》のこと。
     ただし、εは正ならばどんなに小さくてもよいとする。
・「R上の点aの近傍」とは、点aのあるε近傍を含む《Rの部分集合》のこと。[松坂『解析入門1』3.1-E(p.100)]]
285
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 17:26:39.96 ID:GAsyQrs5(11/11) AAS
>>284
素晴らしい解説ありがとう(^^
すぐには理解できないので、それはじっくり読むよ

ところで、本当に標準テキストにそれはないのか? 自分で検索した範囲では見つからず。
リプシッツ不連続な点が、1点で被覆できるか、それともε近傍になるかくらい、基礎の基礎だと思うんだが?

そして、無いとすれば、それやっぱりプロの数学者に見てもらった方が良いのでは?
もし、初出なら勿体ないよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s