[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
49
(7): 132人目の素数さん [sage] 2017/12/15(金) 12:44:46.31 ID:8RLwNZRE(1/10) AAS
おっちゃんです。
>>23-25>>27は取り消し。
最初は ε-δ だけで示せると思ったが、落とし穴があった。

Iを開区間とする。連結な距離空間 R^2 から誘導される位相について、任意の正の実数εに対し、
任意のIの有理点aと任意の実数yとに対して定まりx-座標が有理数aとなるような、
連結な距離空間 R^2 上のε-近傍 U_ε(a,y) が完全集合とする。
このとき、Iを定義域とし、任意のIの有理点で不連続、かつ任意のIの無理点で連続となる実関数 f(x) は存在しない。
証明) [第1段]:開区間Iで定義され、任意のIの有理点で不連続、かつ任意のIの無理点で連続となる実関数 f(x) が
存在するとする。Iの有理点aを任意に取る。実関数 f(x) は点aで不連続だから、或る正の実数εに対して
正の実数 δ(ε) が定まって、|a−b|<δ(ε) であって |f(a)−f(b)|≧ε を満たすようなIの有理点bが存在する。
S_1={ c∈I | cは無理数で、|c−a|<δ(ε) }、S_2={ c∈I | cは無理数で、|c−b|<δ(ε) } とおく。すると、
区間Iは連結な実数直線Rの部分空間だから、無理数の稠密性から、max(|c−a|, |c−b|)<δ(ε) なるIの無理点cが存在し、
(S_1)∩(S_2)≠Φ。有理数の稠密性から、0<d<ε なる有理数dが存在して、0<d/2<ε/2。A=d/2 とおく。
50
(2): 132人目の素数さん [sage] 2017/12/15(金) 12:48:30.81 ID:8RLwNZRE(2/10) AAS
(>>49の続き)
[第2段]:i=1,2 を任意に取る。iに対して点 c∈(S_1)∩(S_2) を任意に取る。実関数 f(x) はIの無理点cで連続だから、
Aに対して或る正の実数 δ'(A) が定まって、M=δ'(A) とおくと、|c−x|<M のとき |f(c)−f(x)|<A となる。
|c−x_{i,1}|<M なるIの点 x_{i,1} を適当に取り、|f(c)−f(x_{i,1})|<ε_{i,1}<A を満たす正の実数 ε_{i,1} を任意に取る。
2以上の正整数nを任意に取る。同様に、|c−x_{i,n}|<M なるIの点 x_{i,n} を適当に取り、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,1}
を満たす正の実数 ε_{i,n} を任意に取る。同様に、|c−x_{i,n+1}|<M なるIの点 x_{i,n+1} を適当に取り、
|f(c)−f(x_{i,n+1})|<ε_{i,n+1}<ε_{i,n} を満たす正の実数 ε_{i,n+1} を任意に取る。
2以上の正整数nは任意であるから、nについて帰納的に考えると、任意の2以上の正整数nに対して
次の条件をすべて同時に満たすようなIの実数 x_{i,n}, x_{i,(n+1)} と正の実数 ε_{i,n}, ε_{i,(n±1)} が存在する:
?@):|c−x_{i,n}|<M、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,(n-1)}、
?A):|c−x_{i,(n+1)}|<M、|f(c)−f(x_{i,(n+1)})|<ε_{i,(n+1)}<ε_{i,n}。
ここに、|c−x_{i,1}|<M、|f(c)−f(x_{i,1})|<ε_{i,1}<A。このとき構成された正の実数列 { ε_{i,n} } は単調減少である。
{ ε_{i,n} } は下に有界で、任意の正整数nに対して ε_{i,n}, x_{i,n} は |f(c)−f(x_{i,n})|<ε_{i,n} を満たすから、
iに対して或る非負実数 μ_i が存在して { ε_{i,n} } は μ_i に収束し、任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}。
iに対して (S_1)∩(S_2) の点cが任意に取れて、i=1,2 は任意だったから、各 i=1,2 に対して、点 c∈(S_1)∩(S_2) を任意に取れば、
すべての正整数nについて条件 |c−x_{i,n}|<M を満たすようなIの点列 { x_{i,n} } が任意に取れて、
更にiに対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、{ ε_{i,n} } は μ_i に収束し、
任意の正整数nに対して μ_i≦|f(c_i)−f(x_{i,n})|<ε_{i,n}<A=d/2 となる。
53
(2): 132人目の素数さん [sage] 2017/12/15(金) 12:53:30.18 ID:8RLwNZRE(3/10) AAS
(>>50の続き)
[第3段]:正の実数εと実数 f(a) とに対して、連結な距離空間 R^2 から誘導される位相について、x-座標が有理点aとなる
連結距離空間 R^2 上の点 (a,f(a)) の R^2 のε-近傍 U_ε(a,f(a)) を完全集合とする。無理数 c_1∈(S_1)∩(S_2) を任意に取る。
任意の正の実数εに対して、連結距離空間 R^2 から誘導された位相について、連結距離空間 R^2 の点 (a,f(a)) の R^2 の
ε-近傍 U_ε(a,f(a)) 上にx-座標が有理数なる R^2 の点は稠密に存在し、(a,f(a)) は孤立点ではない。
従って、A=d/2 となって |f(a)−f(b)|≧ε>d=2A となることに着目し、三角不等式に注意すると、
任意に、すべての正整数nについて条件 |c_1−x_{1,n}|<M を満たし、かつ或る正整数 m'_1 に対して x_{1, m'_1}=a であり、
すべての n≠m'_1 なる正整数nに対して x_{1,n}≠b となるようなIの点列 { x_{1,n} } が取れる。
そして、正の単調減少列 { ε_{1,n} }、及び或る非負実数 μ_1 がそれぞれ定まって、{ ε_{1,n} } は μ_1 に収束し、
このとき任意の正整数nに対して μ_1≦|f(c_1)−f(x_{1,n})|<ε_{1,n}<A となる。
同様に、正の実数εと実数 f(b) とに対して、連結な距離空間 R^2 から誘導される位相について、x-座標が有理点bとなる
連結距離空間 R^2 上の点 (b,f(b)) の R^2 のε-近傍 U_ε(b,f(b)) を完全集合とする。無理数 c_2∈(S_1)∩(S_2) を任意に取る。
任意の正の実数εに対して、連結距離空間 R^2 から誘導された位相について、連結距離空間 R^2 の点 (b,f(b)) の R^2 の
ε-近傍 U_ε(b,f(b)) 上にx-座標が有理数なる R^2 の点は稠密に存在し、(b,f(b)) は孤立点ではない。
従って同様に、任意に、すべての正整数nについて条件 |c_2−x_{2,n}|<M を満たし、かつ或る正整数 m'_2 に対して x_{2, m'_2}=b であり、
すべての n≠m'_2 なる正整数nに対して x_{2,n}≠a となるようなIの点列 { x_{2,n} } が取れる。
そして、正の単調減少列 { ε_{2,n} }、及び或る非負実数 μ_2 がそれぞれ定まって、{ ε_{2,n} } は μ_2 に収束し、
このとき任意の正整数nに対して μ_2≦|f(c_2)−f(x_{2,n})|<ε_{2,n}<A となる。
55
(2): 132人目の素数さん [sage] 2017/12/15(金) 12:56:00.96 ID:8RLwNZRE(4/10) AAS
(>>53の続き)
[第4段]:故に c_1=c_2 として点 c∈(S_1)∩(S_2) を任意に取れば、任意に、すべての正整数nについて条件 |c−x_{1,n}|<M を満たし、
かつ或る正整数 m_1 に対して x_{1, m_1}=a であり、すべての n≠m_1 なる正整数nに対して x_{1,n}≠b となるような
Iの点列 { x_{1,n} } が取れる。このとき更に、任意に、すべての正整数nについて条件 |c−x_{2,n}|<M を満たし、
かつ或る正整数 m_2 に対して x_{2, m_2}=b であり、すべての n≠m_2 なる正整数nに対して x_{2,n}≠a となるような
Iの点列 { x_{2,n} } が取れる。そして、各 i=1,2 に対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、
{ ε_{i,n} } は μ_i に収束し、このとき任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}<A となる。
[第5段]:i=1,n=m_1 とすると、x_{1,m_1}=a から |c−a|<M であって、|f(c)−f(a)|<A=d/2。
同様に、i=2,n=m_2 とすると、x_{2,m_2}=b から |c−b|<M であって、|f(c)−f(b)|<A=d/2。
従って、三角不等式から、|a−b|≦|a−c|+|c−b|<M+M=2M、|f(a)−f(b)|≦|f(a)−f(c)|+|f(c)−f(b)|<d/2+d/2=d。
d/2 に対して定まる正の実数 δ(d/2) を δ(d/2)=2M とおけば、|a−b|<δ(d/2) であって |f(a)−f(b)|<d<ε、
故に、εに対して定まる正の実数 δ(ε) を δ(ε)=δ(d/2) とおけば、|a−b|<δ(ε) であって |f(a)−f(b)|<ε。
しかし、これは |f(a)−f(b)|≧ε であったことに反し矛盾する。背理法が適用出来るから、任意の正の実数εに対して、
連結な距離空間 R^2 から誘導される位相について、任意のIの有理点a'と任意の実数yとに対して定まりx-座標が有理数a'となるような、
連結な距離空間 R^2 上のε-近傍 U_ε(a',y) を完全集合とすると、区間Iで定義された
すべてのIの有理点で不連続、すべてのIの無理点で連続な実関数 f(x) は存在しないことになる。
56
(3): 132人目の素数さん [sage] 2017/12/15(金) 12:58:18.30 ID:8RLwNZRE(5/10) AAS
開区間Iを定義域とし、任意のIの有理点で不連続、かつ任意のIの無理点で微分可能となる実関数 f(x) は存在しない。
(証明) [第6段]:Iを定義域とし、任意のIの有理点で不連続、かつ任意のIの無理点で微分可能となる実関数 f(x) が存在するとする。
正の実数εを任意に取る。I上の無理点aを任意に取る。点aで微分可能な f(x) はaで連続だから、有理数の稠密性から、
通常の位相について、任意のI上のaを含む開区間上に有理数は稠密に存在し、aは孤立点ではない。
従って、或るIの有理点bが存在して、連結な距離空間 R^2 から誘導される位相について、
連結距離空間 R^2 上の点 (a,f(a)) の R^2 のε-近傍 U_ε(a,f(a)) に点 (b,f(b)) は存在し、(b,f(b)) は孤立点ではない。
0<ε'<ε なる実数ε'を任意に取る。ε'に対して、連結な距離空間 R^2 から誘導される位相について、
連結距離空間 R^2 上の点 (b,f(b)) の R^2 のε'-近傍 U_ε'(b,f(b)) 上において、x-座標のy、及びy-座標のy'が任意の実数
なるような連結距離空間 R^2 の点 (y,y') は稠密に存在し、(y,y') は孤立点ではない。開区間IはRの連結部分空間だから、
連結な距離空間 R^2 のε'-近傍 U_ε'(b,f(b)) 上において、yが任意のIの有理数、y'が任意の実数なるような
連結距離空間 R^2 の点 (y,y') は稠密に存在し、(y,y') は孤立点ではない。
0<ε'<ε なる実数ε'と正の実数εは両方共に任意であるから、正の実数εを走らせつつ、ε'を条件 0<ε'<ε の下で走らせれば、
或る正の実数εに対して、或るIの有理数yと或る実数y'が両方共に存在して、連結な距離空間 R^2 から誘導される位相について、
連結距離空間 R^2 上の点 (y,y') の R^2 のε-近傍 U_ε(y,y') は完全集合となる。従って、yが属しかつIに含まれるような
開区間I'が存在して、I'で定義された f(x) について、任意のI'の有理点で不連続、かつ任意のI'の無理点で連続とはなり得ない。
しかし、これは f(x) が任意のIの有理点で不連続、かつ任意のIの無理点で連続となることに反し矛盾する。
故に、背理法が適用出来て、Iを定義域とし、任意のIの有理点で不連続、かつ任意のIの無理点で微分可能となる実関数 f(x) は存在しない。
57: 132人目の素数さん [sage] 2017/12/15(金) 13:00:53.36 ID:8RLwNZRE(6/10) AAS
あっ、>>56>>55の続きで、新たな命題の証明。
59: 132人目の素数さん [sage] 2017/12/15(金) 16:37:37.27 ID:8RLwNZRE(7/10) AAS
>>49の訂正:
示す命題の仮定
>連結な距離空間 R^2 から誘導される位相について、任意の正の実数εに対し、
>任意のIの有理点aと任意の実数yとに対して定まりx-座標が有理数aとなるような、
>連結な距離空間 R^2 上のε-近傍 U_ε(a,y) が完全集合とする。

>連結な距離空間 R^2 から誘導される位相について、高々1個の正の実数εに対し、
>高々2個のIの異なる有理点 a,b に対してそれぞれy-座標が a' ,b' が定まって得られるような、
>連結距離空間 R^2 上のε-近傍 U_ε(a, a'), ε-近傍 U_ε(b, b') の各閉包を完全集合とする。
に変更。

>>53の訂正:>>53のはじめの文
>…連結距離空間 R^2 上の点 (a,f(a)) の R^2 のε-近傍 U_ε(a,f(a)) を完全集合とする。
と途中の文
>同様に、正の実数εと実数 f(b) とに対して、…連結距離空間 R^2 上の点 (b,f(b)) の R^2 のε-近傍 U_ε(b,f(b)) を完全集合とする。
は、それぞれ
>…連結距離空間 R^2 上の点 (a,f(a)) の R^2 のε-近傍 U_ε(a,f(a)) 「の閉包」を完全集合とする。
>同様に、正の実数εと実数 f(b) とに対して、…連結距離空間 R^2 上の点 (b,f(b)) の R^2 のε-近傍 U_ε(b,f(b)) 「の閉包」を完全集合とする。
に訂正。「の閉包」を加える。
60: 132人目の素数さん [sage] 2017/12/15(金) 16:40:48.25 ID:8RLwNZRE(8/10) AAS
>>55の第5段の
>背理法が適用出来るから、任意の正の実数εに対して、連結な距離空間 R^2 から誘導される位相について、
>任意のIの有理点a'と任意の実数yとに対して定まりx-座標が有理数a'となるような、
>連結な距離空間 R^2 上のε-近傍 U_ε(a',y) を完全集合とすると、
の部分は
>背理法が適用出来るから、任意の正の実数εに対して、連結な距離空間 R^2 から誘導される位相について、
>高々1個の正の実数εに対し、高々2個のIの異なる有理点 a,b に対してそれぞれy-座標が a' ,b' が定まって得られるような、
>連結距離空間 R^2 上のε-近傍 U_ε(a, a'), ε-近傍 U_ε(b, b') の各閉包を完全集合とすると、
に変更。
61: 132人目の素数さん [sage] 2017/12/15(金) 16:45:18.79 ID:8RLwNZRE(9/10) AAS
>>56の訂正:
或る正の実数εに対して、或るIの有理数yと或る実数y'が両方共に存在して、…
→ 或る正の実数εについて、或るIの有理数yに対して実数 f(y) が定まって、…
つまり、
>0<ε'<ε なる実数ε'と正の実数εは両方共に任意であるから、
以降の「y'」は全部(或るyに対して定まる)「f(y)」に変更。

>0<ε'<ε なる実数ε'と正の実数εは両方共に任意であるから、正の実数εを走らせつつ、ε'を条件 0<ε'<ε の下で走らせれば、
>或る正の実数εについて、或るIの有理数yと或る実数 f(y) が定まって、連結な距離空間 R^2 から誘導される位相について、
>連結距離空間 R^2 上の点 (y,f(y)) の R^2 のε-近傍 U_ε(y,f(y)) は完全集合となる。従って、…
の部分の「ε-近傍 U_ε(y,f(y)) は完全集合となる。」は「ε-近傍 U_ε(y,f(y)) の閉包は完全集合となる。」に訂正。

あと、下から4行目の「従って、…」とその直前の文「…「U_ε(y,f(y)) の閉包」は完全集合となる。」との間に、次の一文を挿入。
>同様にして考えると、或る正の実数ε'に対して、或るyとは異なるIの有理数y'に対して実数 f(y') が定まって、連結な距離空間 R^2 から
>誘導される位相について、連結距離空間 R^2 上の点 (y',f(y')) の R^2 のε'-近傍 U_ε'(y',f(y')) の閉包は完全集合となる。
>従って、δ=min(ε,ε') とおけば、連結な距離空間 R^2 から誘導される位相について、連結距離空間 R^2 上の2点 (y,f(y))、(y',f(y')) の
>各 R^2 のδ-近傍 U_δ(y,f(y))、U_δ(y',f(y')) の各閉包は両方共に完全集合となる。
62
(1): 132人目の素数さん [sage] 2017/12/15(金) 17:27:27.28 ID:8RLwNZRE(10/10) AAS
じゃ、昨日余り寝ていないんで、おっちゃん寝る。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s