[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
122: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 15:32:29.99 ID:/2xvBEHK(34/58) AAS
>>111
フルペーパーまではゲットできず(^^
まあ、Abstractだけでも
http://www.calmathsoc.org/bulletin/article.php?ID=B.1957.49.31
Bulletin of the Calcutta Mathematical Society
Article Details
Article ID B.1957.49.31
Title A Note on Derivatives of a Function
Author H.M. Sengupta & B.K. Lahiri
Issue Vol. 49, No. 4, - 1957
Article No. 31, Pages 189-191
Abstract
Recently Prof. Fort Jr. (1951) has proved a striking theorem regarding the differentiability of a function which is discontinuous over an everywhere dense set and continuous over an everywhere dense set.
He has proved that if the set of points where the function is discontinuous be everywhere dense and if there be an everywhere dense set of points where f(x) is continuous, then the set of points (if it exists) where the function is differentiable is a set of the first category.
He proves this by showing that the set of points where f(x) is continuous but not differentiable is a residual set.
In this note it is a proposed to show that in case there is an everywhere dense set of points when f(x) is discontinuous and an everywhere dense set of points where f(x) is continuous, then there always exists a residual set at each point of which at least one of the four derivatives D^+f, D_+f, D^-f is infinite.
In this connection, we refer to an article by W.H. Young (1903) [see Hobson, 1927] where it is proved that for any function f(x) defined in a
Latex Reference [BiBTeX format]
@ARTICLE { [citing tag of your choice],
? ?AUTHOR = {H.M. Sengupta & B.K. Lahiri},
? ?TITLE = {A Note on Derivatives of a Function},
? ?YEAR = {1957},
? ?JOURNAL = "Bulletin of Cal. Math. Soc.",
? ?VOLUME = {49},
? ?NUMBER = {4},
? ?PAGES = {189-191} }
以上
142: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 21:31:27.99 ID:/2xvBEHK(43/58) AAS
>>141 つづき
直観に反する例
実数直線内の開区間 (0, 1) に属する点 x であって、その二進小数展開の各位の数 (digit) xi が以下のような条件をすべて満足するもの全体の成す集合を F とする。
・xi = 0 または xi = 1 の何れかが成り立つ。
・xi = 1 となる添字 i は有限個しかない。
・m が xm = 1 なる最大の添字ならば xm?1 = 0 が成り立つ。
・xi = 1 かつ i < m ならば xi?1 = 1 または xi+1 = 1 が二者択一で成り立つ。
これは感覚的に言えば、x の二進小数展開の各位の数で 1 に等しいものはどれも連続した 1 の対で現れるが、最後の一つは孤立するということである。
さて F は全く孤立点のみからなる陽に表された集合である[1]一方で、F はその閉包が非可算集合になるという直観に反する性質を持つ[2]。
同様の性質を持つ集合 F の別な例は、単位閉区間 [0, 1] 内のカントール集合の補集合において、その各連結成分から一点(例えば中央点)を選び出すことでも与えられる。この集合の各点は孤立するが、F の閉包は F とカントール集合との合併であり、可算でない。
[1][2] https://ja.wikipedia.org/wiki/%E5%AD%A4%E7%AB%8B%E7%82%B9#CITEREFGomez-Ramirez_2007
Gomez-Ramirez, Danny (2007), “An explicit set of isolated points in R with uncountable closure”, Matematicas: Ensenanza universitaria (Escuela Regional de Matematicas. Universidad del Valle, Colombia) 15: 145?147
(引用終り)
以上
193(2): 132人目の素数さん [sage] 2017/12/17(日) 13:52:27.99 ID:hq2iNkBc(1) AAS
「反例もどき」は無限個存在する
そんなものをいちいち相手にしてたら日が暮れる
スレ主は数学板から出てけよ
実力不足も甚だしい
480(1): 132人目の素数さん [sage] 2017/12/23(土) 20:59:51.99 ID:ANqzVc/X(11/13) AAS
>>478
>これらは、x=0のε近傍(開集合)(0-ε、0+ε)で成り立っていると解すべきと思うけどね
>まあ、これは定義の問題でもあるかも知れないが・・
既にレスは書いたが、ここについては、次のような言い方をしてもよい。
まず、お前の主張が正しいとすると、
(−ε, ε) ⊂ R−Bf
が成り立つことになる。R−Bf = { x∈R|Af(x)=+∞ } に注意して、
(−ε, ε) ⊂ { x∈R|Af(x)=+∞ } … (1)
が成り立つことになる。では、x=ε/2 としてみよう。
このとき、x∈(−ε, ε) だから、(1) により
Af(x)=+∞
が成り立つことになる。一方で、f'(x)=−1/x^2 だから、Af(x)=|f'(x)|=1/x^2 であり、
Af(x)=+∞ に矛盾する。よって、お前の主張は自動的に間違いである。
569: 132人目の素数さん [] 2017/12/26(火) 17:53:13.99 ID:O+kvrrVD(1/2) AAS
>>568
(なんで、だれもいままで気づかなかった? 本当に”構成不能”が成り立っている? 新定理? どう思いますか? )
おーい!!
スレ主が迷走してるぞ。誰か黄色い救急車を呼んでやってくれ!!
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s