[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
20(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/14(木) 08:25:58.91 ID:oVKNFyGV(16/22) AAS
>>14 関連
えーと
スレ46 2chスレ:math
422 名前:132人目の素数さん[sage] 投稿日:2017/11/20(月) 16:45:28.40 ID:sVbA75bK [2/4]
>>421のリンク先の証明は個人的には すんなり頭に入ってこないので、
微分可能な点の方から攻める方針でやってみたら、次の定理が得られた。
定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ } と置く。
もし R−B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。
この定理を使うと、f:R → R であって、「xが有理数のとき不連続、xが無理数のとき微分可能」
となるものは存在しないことが即座に分かる。一応やってみると、そのような関数 f が存在したとすると、
R−Q = 無理数全体 = (fの微分可能点全体) ⊂ B_f
となるので、
R−B_f ⊂ Q = ∪[p∈Q] { p } …(1)
となる。(1)の右辺は疎な閉集合の可算和だから、上の定理が使えて、f はある開区間(a,b)の上で
リプシッツ連続になる。特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。
仮定から、fは点xで不連続であるが、しかしx∈(a,b)より、fは点xで連続であり、矛盾する。
(引用終り)
235(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/18(月) 19:10:04.91 ID:MukQBD/9(5/7) AAS
そのなぞが解けない限り、うっかり乗せられたら、ビックカメラかも知れないと思っているよ
287(2): 132人目の素数さん [sage] 2017/12/19(火) 17:55:34.91 ID:bELCiM4Y(2/5) AAS
(>>286の続き)
[第2段]:i=1,2 を任意に取る。iに対して点 c∈(S_1)∩(S_2) を任意に取る。実関数 f(x) はIの無理点cで微分可能なことから
cで連続だから、Aに対して或る正の実数 δ'(A) が定まって、M=δ'(A) とおくと、|c−x|<M のとき |f(c)−f(x)|<A となる。
|c−x_{i,1}|<M なるIの点 x_{i,1} を適当に取り、|f(c)−f(x_{i,1})|<ε_{i,1}<A を満たす正の実数 ε_{i,1} を任意に取る。
2以上の正整数nを任意に取る。同様に、|c−x_{i,n}|<M なるIの点 x_{i,n} を適当に取り、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,1}
を満たす正の実数 ε_{i,n} を任意に取る。同様に、|c−x_{i,n+1}|<M なるIの点 x_{i,n+1} を適当に取り、
|f(c)−f(x_{i,n+1})|<ε_{i,n+1}<ε_{i,n} を満たす正の実数 ε_{i,n+1} を任意に取る。
2以上の正整数nは任意であるから、nについて帰納的に考えると、任意の2以上の正整数nに対して
次の条件をすべて同時に満たすようなIの実数 x_{i,n}, x_{i,(n+1)} と正の実数 ε_{i,n}, ε_{i,(n±1)} が存在する:
@):|c−x_{i,n}|<M、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,(n-1)}、
A):|c−x_{i,(n+1)}|<M、|f(c)−f(x_{i,(n+1)})|<ε_{i,(n+1)}<ε_{i,n}。
ここに、|c−x_{i,1}|<M、|f(c)−f(x_{i,1})|<ε_{i,1}<A。このとき構成された正の実数列 { ε_{i,n} } は単調減少である。
{ ε_{i,n} } は下に有界で、任意の正整数nに対して ε_{i,n}, x_{i,n} は |f(c)−f(x_{i,n})|<ε_{i,n} を満たすから、
iに対して或る非負実数 μ_i が存在して { ε_{i,n} } は μ_i に収束し、任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}。
iに対して (S_1)∩(S_2) の点cが任意に取れて、i=1,2 は任意だったから、各 i=1,2 に対して、点 c∈(S_1)∩(S_2) を任意に取れば、
すべての正整数nについて条件 |c−x_{i,n}|<M を満たすようなIの点列 { x_{i,n} } が任意に取れて、
更にiに対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、{ ε_{i,n} } は μ_i に収束し、
任意の正整数nに対して μ_i≦|f(c_i)−f(x_{i,n})|<ε_{i,n}<A=d/2 となる。
427: 132人目の素数さん [] 2017/12/23(土) 00:20:59.91 ID:vWsab/FY(1) AAS
スレ主の人はちょっと権威主義が過ぎるきらいがあるね
それって数学の対極なような気もするけど
514(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 22:01:49.91 ID:Q5UHveEY(17/18) AAS
>>512
違うのか! それは残念だな(^^
ところで、>>513 に引用したけど、
” ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合である”は、良いんだろ?
で、1 点集合以外で、R上において「内点を持たない閉集合」としては、どんな例があるのかな?( >>505より )
525: 132人目の素数さん [sage] 2017/12/25(月) 07:29:02.91 ID:U1NU7yFp(3/12) AAS
>>520
あるいは、権威主義のスレ主のために、次のような言い方をしてもよい。
まず、>>503 で書いたことを もう一度書くが、集合 A が内点を持たない閉集合の高々可算和で
被覆できるとき、A のことを「第一類集合」と呼ぶのである。従って、例の pdf の
> 「定義1.2 (X,O) は位相空間とする. S ⊆ X は, 高々可算無限個の閉集合Fi ⊆ X が存在して,
> 各Fiは内点を持たない,
> S ⊆ ∪iFi
> が成り立っているとする. このとき,「S は内点を持たない閉集合の高々可算和で被覆できる」と書くことにする.」
この記述は、「 S は第一類集合 」の定義を書いているだけである。
これとスレ主のトンチンカンな主張を組み合わせると、
「定義1.2 の集合 S は、各 F_i が高々可算無限集合でなければ第一類集合とは呼ばない( F_i に連続濃度を許すと、個数が曖昧になる)」
というアホな主張をしていることになる。しかし、第一類集合 S であって、
F_i を可算無限に限定することが出来ないものが ごく普通に存在するので、
この時点でスレ主は間違っていることになる。
ま、いずれにしても本質的には「国語の問題」なので、
スレ主はキチンと定義を読み直すことだ。
563: 132人目の素数さん [] 2017/12/26(火) 12:28:32.91 ID:bh2BICch(1/4) AAS
>>562
もともと
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s