[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
24(2): 132人目の素数さん [sage] 2017/12/14(木) 18:25:40.80 ID:JQcHE8p2(2/5) AAS
[第2段]:i=1,2 を任意に取る。iに対して点 c∈(S_1)∩(S_2) を任意に取る。
実関数 f(x) はIの無理数cで連続だから、Aに対して或る正の実数 δ'(A) が定まって、
M=δ'(A) とおくと、|c−x|<M のとき |f(c)−f(x)|<A となる。
|c−x_{i,1}|<M なるIの点 x_{i,1} を適当に取り、
|f(c)−f(x_{i,1})|<ε_{i,1}<A を満たす正の実数 ε_{i,1} を任意に取る。
2以上の正整数nを任意に取る。同様に、|c−x_{i,n}|<M なるIの点 x_{i,n} を適当に取り、
|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,1} を満たす正の実数 ε_{i,n} を任意に取る。
同様に、|c−x_{i,n+1}|<M なるIの点 x_{i,n+1} を適当に取り、
|f(c)−f(x_{i,n+1})|<ε_{i,n+1}<ε_{i,n} を満たす正の実数 ε_{i,n+1} を任意に取る。
2以上の正整数nは任意であるから、nについて帰納的に考えると、任意の2以上の正整数nに対して
次の条件をすべて同時に満たすようなIの実数 x_{i,n}, x_{i,(n+1)} と正の実数 ε_{i,n}, ε_{i,(n±1)} が存在する:
?@):|c−x_{i,n}|<M、|f(c)−f(x_{i,n})|<ε_{i,n}<ε_{i,(n-1)}、
?A):|c−x_{i,(n+1)}|<M、|f(c)−f(x_{i,(n+1)})|<ε_{i,(n+1)}<ε_{i,n}。
ここに、|c−x_{i,1}|<M、|f(c)−f(x_{i,1})|<ε_{i,1}<A。
このとき構成された正の実数列 { ε_{i,n} } は単調減少である。{ ε_{i,n} } は下に有界で、
任意の正整数nに対して ε_{i,n}, x_{i,n} は |f(c)−f(x_{i,n})|<ε_{i,n} を満たすから、
iに対して或る非負実数 μ_i が存在して { ε_{i,n} } は μ_i に収束し、
任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}。
iに対して (S_1)∩(S_2) の点 c が任意に取れて、i=1,2 は任意だったから、各 i=1,2 に対して、点 c∈(S_1)∩(S_2) を任意に取れば、
すべての正整数nについて条件 |c−x_{i,n}|<M を満たすようなIの点列 { x_{i,n} } が任意に取れて、
更にiに対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、
{ ε_{i,n} } は μ_i に収束し、任意の正整数nに対して μ_i≦|f(c_i)−f(x_{i,n})|<ε_{i,n}<A=d/2 となる。
173(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 10:04:44.80 ID:uVIGteN6(9/26) AAS
回りを見渡して見ろよ
おれ以外にろくなコメントついてないだろ?
5CHなんて、所詮そういうところだよ
185(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 13:18:42.80 ID:uVIGteN6(13/26) AAS
>>177
レベルの高い友達いないのか? (レベル低いのはだめだよ)
いれば、そいつに証明みてもらえよ(^^
なんか、あんたこの5CH数学板が唯一の数学の場に思えてくるね〜
401(3): 132人目の素数さん [] 2017/12/22(金) 13:35:59.80 ID:zkh22JUH(1/2) AAS
どっちもどっち
ID:KNjgsEZnはただの基地外
560: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 11:48:11.80 ID:oeOow6Ma(1/5) AAS
>>555
「ぷふ」さん、どうもスレ主です。
レスありがとう
開でなければ閉と誤解してましたね(^^
これ>>552ですね
584: 132人目の素数さん [sage] 2017/12/26(火) 20:37:45.80 ID:BhzQ/YUm(4/8) AAS
結局、ここでのスレ主の勘違いを簡潔に述べると、次のようになる。
(1)での勘違い:
「どこかにBfを満たす区間(a, b)が取れる」という条件だけでは、例の定理の結論は導けず、
結局は例の定理を最初から丸ごと証明しなければならないような事態に陥るのに、
「(1)の場合は自明であり、何も証明する必要がない」 などと勘違いした。
(2)での勘違い:
スレ主は例の定理の結論が何なのかを全く把握せずに、勝手にスレ主自身の手で
場合分けした挙句に、その場合分けによって導かれる結論を
「もともとの例の定理の結論である」
と勝手に勘違いしてしまい、
「ゆえに、この場合は証明の必要がない」
などとトンチンカンな間違いに陥った。もしくは、無意識のうちに
例の定理そのものを適用してしまうという循環論法に陥ったがゆえに、
「この場合は証明の必要がない」
などとトンチンカンな間違いに陥った。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s