[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/14(木) 06:50:59.72 ID:oVKNFyGV(1/22) AAS
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”

数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。

皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )

このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^

話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^

High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 2chスレ:math
旧スレが512KBオーバー(間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
18: 132人目の素数さん [] 2017/12/14(木) 07:47:50.72 ID:kVvHFKBq(2/2) AAS
ルベーグ積分によってノルムとノルムから定まる距離
による距離空間を定めてルベーグの収束定理と縮小写
像の原理を使えば見た目では分からない不動点の存在
が示せるというだけ
153
(1): 132人目の素数さん [] 2017/12/16(土) 23:37:32.72 ID:6lAUkPpQ(14/14) AAS
バカを覆い隠すためひたすらコピペで埋め尽くすスレ主であったとさ
263
(1): 132人目の素数さん [sage] 2017/12/19(火) 10:34:32.72 ID:F1UbN7QE(4/18) AAS
>>261
> なんか、ごまかしてないか?

ごまかしてないよ

> 2)Rの一点部分集合{0}やQが『内点を持たない閉集合で被覆できる』ことが分からないのか?(呆)

って言ってるじゃん。R-Bfが一点集合{0}やQなら被覆できるじゃん。何の文句があるんだよ
284
(4): 132人目の素数さん [sage] 2017/12/19(火) 17:06:56.72 ID:eFT4s0P8(10/13) AAS
以上により、

R−B_f = { x∈R| limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ }

となる。このことを前提として、「3」「4」の関数 f に対して R−B_f がどのような集合になるのかを、
ヘンな言葉を使わずに機械的に見ていく。

「3」の関数の場合:

・ x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x=0 のときは、limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ である。

以上より、この f の場合は { x∈R| limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ } = {0} となる。
すなわち、R−B_f = {0} となる。

「4」の関数の場合:
・ x<0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x>0 なる任意の x に対して、limsup[y→x]|(f(y)−f(x))/(y−x)|=0 である。
・ x=0 のときは、limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ である。

以上より、この f の場合も { x∈R| limsup[y→x]|(f(y)−f(x))/(y−x)|=+∞ } = {0} となる。
すなわち、R−B_f = {0} となる。

従って、「3」「4」の関数に対して「 R−B_f は内点を持たない閉集合の高々可算和で被覆できるか?」という問題を考えることは、
「 {0} は内点を持たない閉集合の高々可算和で被覆できるか?」という問題を考えることに一致する。そして、その問題では
明らかに「被覆できる」。以上により、「3」「4」の f の場合は「被覆できる」ことになる。

取り合えずはここまで。何か疑問があったらどうぞ。
376
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/21(木) 10:22:00.72 ID:xTe57EH6(2/4) AAS
>>371
>例の定理にスレ主がイチャモンをつけているから、

(>>303より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.
(以下証明の文言から)
よって、 f は(a, b) 上でリプシッツ連続である.”

これを踏まえて

1.いままでの流れを見て分かるように、イチャモンでも何でもない。
2.5CHに見慣れぬ定理と証明が投下された。まず、その定理が自分の知識体系の中でどこに位置するのかを見極めることは、数学をする態度として、正道だろう
3.数学において、その定理が、新規かそれとも、既知・既存の定理かを見極めることは、極めて大事なことだ。
  既知・既存の定理であれば、既存の理論体系の中のどこに位置するのかの確認をすべき
4.新規であったとしても、基本、数学の定理というものは、独立ばらばらに存在するものではなく、理論体系を成すべきもの。
  であれば、新規であったとしても、それは理論体系の中のどこに位置すべきか。また、類似の定理との比較も必要だろう。
5.それ無くしては、数学の勉強にもならない。
  それ無くしては、その定理の応用もできまい。
  また、その探索の過程で、定理が、既存の理論と矛盾していないかどうかも判明する。
 (もし、既存の理論と矛盾したとしても、修正可能かどうかを見ることも容易だろう)

つづく
487: 132人目の素数さん [sage] 2017/12/23(土) 23:22:22.72 ID:JRmFnvAf(7/7) AAS
こんなにも丁寧で理路整然とした説明を長々と受けておきながら、
実質2ページの短い証明すらまともに読めず(limsupすら知らないという笑)、
くだらないイチャモンをつけまくってるスレ主は数学板史上最悪のクズ野郎である
547
(1): 132人目の素数さん [sage] 2017/12/25(月) 21:11:29.72 ID:U1NU7yFp(10/12) AAS
>>546
そのレスが何を意図しているのか全く意味不明。

R の通常の位相をθと書く。A⊂R に対して、θから定まるA上の相対位相を θ|_A と書く。
・・・という記法のもとで回答すると、

・ その Q' は、位相空間 (R,θ) において開集合にも閉集合にもなってない。

・ その Q' は、位相空間 ( [0,1], θ|_{[0,1]} ) において開集合にも閉集合にもなってない。

・ 例の定理は、位相空間を (R, θ) に固定して記述している定理なので、
  ( [0,1], θ|_{[0,1]} ) を持ち出したところで意味が無い。

・ そもそも、そのレスが何を意図しているのか全く意味不明。

・ スレ主はわざと無視しているのだろうが、そもそもの話として、>>540 で書いたことにより、
 スレ主の大好きな f^r 及び f_w は、例の定理の反例に「ならない」ことが既に確定している。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s