[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
78(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 08:11:03.48 ID:/2xvBEHK(7/58) AAS
>>71
戻る
(引用開始)
スレ47 2chスレ:math
594 名前:132人目の素数さん[sage] 投稿日:2017/12/12(火) 17:31:09.14 ID:14lo33mI [4/9]
以下の pdf に証明を書いた。
https://www.axfc.net/u/3870548?key=Lipschitz
なるべく行間が無いように、丁寧に証明を書いたつもりである。
なお、「疎な閉集合」は「内点を持たない閉集合」と同じことであるから、
pdf の中では「疎な閉集合」という概念を導入せず、必要な個所では その都度
「内点を持たない閉集合」
という言葉に置き換えた。
(引用終り)
つづく
247(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/18(月) 23:31:20.48 ID:nRvm/kYL(8/8) AAS
>>226-228
えーと、>>220で4項の前に書いた、3項(下記)をスルーした?
”3.それを説明するために、まず階段函数を考える
x<0でf(x)=0, 0=<xでf(x)=1である階段函数で、X=0で不連続で不連続点は0で、不連続点は1点であり、”内点を持たない閉集合被覆できる”
一方、X=0を、リプシッツ連続という視点でみると、X=0を挟んで左右平等なので、x<0から見てもリプシッツ”不”連続”
このリプシッツ”不”連続は、1点で被覆できるのか? 少なくとも、左右2点が、リプシッツ”不”連続ではないのか?
もし、異なる2点がリプシッツ”不”連続で、その2点間もリプシッツ”不”連続が言えるなら、内点を持つよ
そもそも、”R−Bf は内点を持たない閉集合で被覆できる”の証明は、どこかの標準テキストにあるのか?
454: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/23(土) 13:28:47.48 ID:lrnu6EUA(18/31) AAS
>>450
>http://sss.sci.ibaraki.ac.jp/teaching/integral/integral2007.pdf
>ルベーグ積分速講 山上 滋 Ibaraki University 2007 年 5 月 23 日
ここには、デイニ微分が出てこないようだ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s