[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
74: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 00:01:34.40 ID:/2xvBEHK(3/58) AAS
>>70
こしぎんちゃく(^^
90: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 12:24:23.40 ID:/2xvBEHK(14/58) AAS
>>87-88
時枝はさ、明らかに不成立だからね
証明なぞ、読む価値なしだよ
189(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 13:22:22.40 ID:uVIGteN6(17/26) AAS
>>181 >>183 & >>184
じゃ、上記>>186 に答えてくれ
(引用)
”>>168で示した、原点0で連続だがリプシッツ連続でないという例は面白いとおもうが
では、それが可算無限個で稠密に存在しえない理由はなんだ?
下記で、r=1のときトマエ関数として、すでに全ての無理数で連続は達成されている(>>34より。なお、下記抜粋ご参照)
”r = 2, f^r is nowhere differentiable and satisfies a pointwise Lipschitz condition on a set that is dense in the reals.”
しかし、”g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.”だと(>>110)。
だが、これの成立条件は、”g be continuous and discontinuous on sets of points that are each dense in the reals.”(>>110)であって、リプシッツ連続とリプシッツ”不”連続ではないよ
リプシッツ連続とリプシッツ”不”連続でも、”g fails to satisfy a pointwise Lipschitz condition, on a co-meager set.”(ここでco-meager setは非可算濃度)
が言える? なぜ言える?
「証明がある」というけれど
私スレ主が言っているのは、クロスチェックという手法でね、別の視点からそれを検証しようということ。クロスチェックに耐えてこそ本物だよ”
(引用終り)
225(1): 132人目の素数さん [sage] 2017/12/18(月) 16:08:33.40 ID:inCE+Hfv(2/7) AAS
以上の準備のもとで、>>220-221 の間違いを指摘する。
どの間違いも、「内点」に対する勘違いが原因であると思われる。
>>220
>5.このような、広がりを持たないけれども、内点を持つ集合の例として、カントール集合がある
>(カントール集合は、ルベーグ測度は 0 でありながら、濃度は実数に等しい集合(連続体濃度の非可算集合)として有名な例である[18]。)
大間違い。カントール集合は内点を持たない。以下、カントール集合のことを S と書くことにする。
もし S が内点を持つなら、S の内点の1つを x とすれば、x∈(a,b) ⊂ S なる a,b が取れるので、
S のルベーグ測度は少なくとも (b−a) 以上となり、S の測度が 0 という事実に矛盾してしまう。
よって、S は内点を持たない。
>>221
>6.それで、リプシッツ”不”連続点が、カントール集合のような、内点を持つ集合(開集合か閉集合かを問わず)で、
>かつルベーグ測度は 0 なる集合で被覆できる点であるとするなら
大間違い。「内点を持つ集合で、かつルベーグ測度は 0 なる集合」は存在しない。理由は上と同じ。
[続く]
234(2): BLACKXスマホ ◆jPpg5.obl6 [sage] 2017/12/18(月) 19:09:38.40 ID:zOXG4ASG(1/2) AAS
どうしてそんなに数日に渡る問題になるか?
と思って私も読んでみたけど兼ね問題なく理解できた。
変形切断幕いわゆるポップコーン関数でも成り立つと考えられるからこれは面白い
fを取らない方法で自分の課題も纏められるかもと考えれた
461(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/23(土) 17:35:37.40 ID:lrnu6EUA(20/31) AAS
おれ的には、最初から
定義、”Af(x) = max { |D^{-}f(x)|, |D^{+}f(x)|, |D_{-}f(x)|, |D_{+}f(x)| }”と、書いておけ!
ってことさ(^^
574(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 19:47:04.40 ID:IBTJ7HPw(1/13) AAS
>>571
黄金の救急車ですか?(^^
ご苦労さまです(^^
>Qで不連続は不要です
同意です
なお、”不連続”は、もともとは、>>562の「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」(>>498)に由来しますよ
>(ある条件)とは?
系1.8の証明のキーになる定理で
>>561の定理1.7 (422 に書いた定理)より
”f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば”
が条件です。
なお、定理1.7の結論命題は、「f はある開区間の上でリプシッツ連続である.」(>>561)です。
(なお、この定理1.7 については、>>561に批判のコメントを書いたので、見て頂ければ幸いです)
577(1): 132人目の素数さん [] 2017/12/26(火) 20:02:52.40 ID:84+rbTu3(4/8) AAS
>>575
>上記>>574 の定理1.7での Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
>
>に対する補集合 R−Bfが満たすべき性質を、都合上、俗に”リプシッツ不連続”と呼称させて頂きました
つまり
xにおいて``リプシッツ不連続''とは
limsup[y→x] |(f(y)-f(x))/(y-x)|=+∞
ということですか
ならば
無理数で可微分有理数でリプシッツ不連続な関数は存在しないという結論を導けますよ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s