[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
14(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/14(木) 07:14:08.33 ID:oVKNFyGV(14/22) AAS
(前スレから)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47
2chスレ:math
(抜粋)
”――――――――――――――――――――――――――――――――――――――――――
R−B_f = (リプシッツ不連続な点全体の集合) が可算無限集合であり、
しかもこれが R の中で稠密であるとすると、「そういう関数は数学的に存在しえない!」
という理解の仕方でいいのか?
――――――――――――――――――――――――――――――――――――――――――
ということになるが、その理解の仕方で問題ない。”
(引用終り)
となってね
これの成否や如何に?
いや〜、楽しい話です(^^
リプシッツ連続の勉強になるわ〜
いままで、不勉強でしたからね〜
どなたか詳しい人、おしえてね〜
(^^
110(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 14:36:58.33 ID:/2xvBEHK(24/58) AAS
>>98 関連
(>>35より、いままでと、重複もあるが、”co-meager”関連引用)
http://mathforum.org/kb/message.jspa?messageID=5432910
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above.
Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function.
Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers.
** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)
Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category.
THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals.
Then g fails to have a derivative on a co-meager (residual) set of points.
In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)
つづく
196(2): 132人目の素数さん [] 2017/12/17(日) 14:08:15.33 ID:vYfx1iwu(4/9) AAS
>他の住民とのレベルとの実力に大きなギャップを感じる。
そりゃそうでしょう
スレ主は大学一年一学期の内容についていけない学力ですから
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s