[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
67
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/15(金) 21:45:11.26 ID:dUFtnfpO(11/14) AAS
>>40 補足

反例の一つの可能性は、連続関数の1回の極限としてのBaire-1級関数で、
可算無限個のリプシッツ”不”連続点(=内点を持たない)が、稠密に分散している関数

そういう関数が、反例として構成できる可能性がないか?

私には、どうすれば良いか
さっぱり浮かびませんがね〜(^^
192: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 13:46:03.26 ID:uVIGteN6(20/26) AAS
>>183
>これを読めないのは本当にザコだと思うよ

ありがとう(^^

「スレ主はザコだ。その定理は正しい」という人が、沢山でてきてくれると、
私の疑問点(>>187)も解消できて、嬉しいね(^^
207: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/17(日) 19:10:08.26 ID:uVIGteN6(26/26) AAS
>>183
そうそう、ID:mDHP3omSさんは、数学科生と見た
まだ、来週は大学行くんだろ?

大学の先輩か(4年以上で、リプシッツ連続に詳しい人)、教官に聞いて貰えないかな?
上記>>206 の質問と、それに”定理1.7”の成否について

よろしくね
224
(1): 132人目の素数さん [sage] 2017/12/18(月) 16:06:30.26 ID:inCE+Hfv(1/7) AAS
>>220
ぜんぜん自己解決してない。論理が滅茶苦茶。
おそらくスレ主は、「内点」がどういう概念なのか全く理解していない。
なので、先に「内点」の定義から始める。位相空間で定義するのが一般的だが、
スレ主のレベルの低さに合わせて、距離空間でのみ定義する。

定義:(開球の定義)
(X, d) を距離空間とする。x∈X を中心とする半径 r の開球を B_r(x) と書くことにする。
すなわち、B_r(x):={ y∈X|d(x,y)<r } である。

定義:(内点の定義)
(X, d) を距離空間とする。A⊂X とする。点 x∈A が集合 A の内点であるとは、B_r(x)⊂A なる r>0 が
存在するときを言う。特に X=R の場合を考えると、集合 A⊂R と x∈A について、

「点 x∈A が集合 A の内点であるのは、x∈(a,b)⊂A なる開区間 (a,b) が存在するとき、かつそのときに限る」

ことが確認できる(距離空間に関する初等的な演習問題である)。

補足:
上記の定義により、「内点」という概念は集合 A とセットで定義される概念であることが分かる。
つまり、集合 A を指定せずに「内点」とだけ書いても意味が定まらない。
必ず、「集合 A の内点」という形で、集合 A とセットで用いられる。
従って、同一の点 x が、ある集合 A においては内点になり、別の集合 B においては内点にならないという事態が
容易に起こる。たとえば、点 0 ∈ R は集合 { y∈R|−1<y<1 } の内点であるが、しかし集合 {0} の内点ではない。
269
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/19(火) 11:02:15.26 ID:GAsyQrs5(7/11) AAS
>>268

知りたいことは
下記
”函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。”
とあるけど

単純に、リプシッツ連続とリプシッツ不連続にも、この(Gδ-集合)と(Fσ-集合)の理論を類推適用してないかな?
で、標準テキストでは、「リプシッツ連続とリプシッツ不連続に、類推適用して良いとなっていない」ように思うが・・

https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
関数の不連続点の集合
函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
(引用終わり)
277
(1): 132人目の素数さん [sage] 2017/12/19(火) 16:39:57.26 ID:eFT4s0P8(5/13) AAS
別の人のレスと重複するところもあるが、俺からの返答。

[一点でのリプシッツ連続・不連続という言葉について]

別の人が既に指摘しているし、俺も前スレで書いているように、そもそも俺は
このような言葉を聞いたことが無い。敢えて定義するなら >>252 のように
定義するのが自然だろう、という話を前スレで行った。そして、前スレの

2chスレ:math

で書いたように、「一点でのリプシッツ条件」という言い方をした方がよい、とも書いた。

その後、スレ主は >>252 の定義に異論を唱えることをせず、しかも「一点でのリプシッツ条件」という言葉は
使わずに「一点でのリプシッツ連続・不連続」という言葉を使い続けた。従って、スレ主もまた、>>252 の用法で
「一点でのリプシッツ連続・不連続」という言葉を使うことに「合意した」のだと俺は解釈しているのだが、
なぜかスレ主は今になって この言葉の定義を蒸し返している。お話にならない。

そして、根本的な話をすると、B_f という集合は、「一点でのリプシッツ連続・不連続」という
ヘンな用語とは無関係に定義されているのだから、「一点でのリプシッツ連続・不連続」という
ヘンな言葉を使わなくても、R−B_f が内点を持たない閉集合の高々可算和で被覆できるかどうかは
機械的に判定可能である。

まとめると、スレ主は、「一点でのリプシッツ連続・不連続」という全く不必要な言葉を振り回した挙句に、
その言葉が持つ表面的な響きに引きずられて、独りで勝手に意味不明な勘違いに陥っていることになる。
387: 132人目の素数さん [sage] 2017/12/21(木) 23:19:39.26 ID:kLAvCsAQ(1) AAS
ここのスレ主は数学板史上最大の鼻つまみ者だな
こんな奴見たことねー
393
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/22(金) 00:02:58.26 ID:UIwpFvOX(2/14) AAS
>>362

ご苦労さん
あとの都合上、下記を引用しておく(^^

https://en.wikipedia.org/wiki/Limit_superior_and_limit_inferior
Limit superior and limit inferior
(抜粋)(アスキー表現の文字化けがあるので、元リンクご参照)
Functions from metric spaces to metric spaces

There is a notion of lim sup and lim inf for functions defined on a metric space whose relationship to limits of real-valued functions mirrors that of the relation between the lim sup, lim inf, and the limit of a real sequence.
Take metric spaces X and Y, a subspace E contained in X, and a function f : E → Y. The space Y should also be an ordered set, so that the notions of supremum and infimum make sense. Define, for any limit point a of E,

lim sup _{x→ a}f(x)=lim _{ε → 0}( sup {f(x):x ∈ E∩ B(a;ε )\{a}})
and
lim inf _{x→ a}f(x)=lim _{ε → 0}( ∈f {f(x):x ∈ E∩ B(a;ε )\{a}})

where B(a;ε) denotes the metric ball of radius ε about a.

つづく
394: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/22(金) 00:04:17.26 ID:UIwpFvOX(3/14) AAS
>>393 つづき

Note that as ε shrinks, the supremum of the function over the ball is monotone decreasing, so we have

lim sup _{x→ a}f(x)= ∈f _{ε >0}( sup {f(x):x ∈ E∩ B(a;ε )\{a}})
and similarly
lim inf _{x→ a}f(x)= sup _{ε >0}( ∈f {f(x):x ∈ E∩ B(a;ε )\{a}}).

This finally motivates the definitions for general topological spaces. Take X, Y, E and a as before, but now let X and Y both be topological spaces. In this case, we replace metric balls with neighborhoods:

lim sup _{x→ a}f(x)= ∈f { sup {f(x):x ∈ E∩ U\{a}}:U open ,a ∈ U,E∩ U\{a}≠ Φ }

lim inf _{x→ a}f(x)= sup { ∈f {f(x):x ∈ E∩ U\{a}}:U open ,a ∈ U,E∩ U\{a}≠ Φ }

(there is a way to write the formula using "lim" using nets and the neighborhood filter).
This version is often useful in discussions of semi-continuity which crop up in analysis quite often.
An interesting note is that this version subsumes the sequential version by considering sequences as functions from the natural numbers as a topological subspace of the extended real line, into the space (the closure of N in [?∞,∞], the extended real number line, is N ∪ {∞}.)
(引用終り)

以上
497
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/24(日) 10:33:54.26 ID:Q5UHveEY(10/18) AAS
>>496 つづき

で、今回の「(a, b) 上でリプシッツ連続である」に関連する部分のみを、さらに抽出すると

[15] Gerald Arthur Heuer先生

THEOREM 4: The function f^2 is Lipschitzian but not
differentiable at the points of the set
{(1/2)*[m - sqrt(d)]: m is an integer
and there exists an integer n such that
d = m^2 - 4n is positive but not a perfect
square} . [This set is dense in the reals.]

THEOREM 5: If g is a function discontinuous at the
rationals and continuous at the irrationals,
then there is a dense uncountable subset
of the reals at each point of which g fails
to satisfy a Lipschitz condition.

かな?

特に、THEOREM 5 変形トマエ函数(Ruler Function)のような、有理数で不連続、無理数で連続なる函数では、
”there is a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition.”
だと

だから、(A)”a dense uncountable subset”で、リプシッツ連続は満たさないは、実現できている

では、なぜ、(B)”内点を持たない閉集合の高々可算和”は、実現することができないのか?

[15] Gerald Arthur Heuer先生の(A)と、定理1.7 (422 に書いた定理)の(B)との差!

これを見極めない限り、素人の証明を読んでも仕方が無いと思う

まあ、年末は忙しい

ゆっくりやりましょう(^^

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s