[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
91(2): 132人目の素数さん [sage] 2016/01/23(土) 12:48:21.87 ID:Vgp44hJm(1/6) AAS
>>81
問題設定は下記。
>>25
>まず、箱に円周率(百万桁)に詰めましょう。提案として、簡単に2列としよう
>1列目に、百万桁の奇数番目の数、その先のしっぽには、全て1をつめる
>2列目に、百万桁の偶数番目の数、その先のしっぽには、全て2をつめる
ゲーム開始前に『代表元の袋』を用意する。
>>64-65
> 最初の列の決定番号を100、第2列目の決定番号を(100^100)^100とでもしますか
最初の列の決定番号が100となる条件は、
しっぽの先が*,1,1,1,1,1,・・・と1が続く類の代表元が
・99番目はπの99番目の奇数桁とは異なる。
・100番目から50万番目まではπの100番目から50万番目の奇数桁に一致する。
・50万1番目以降1が続く。
を満たすことである。
上記をみたす実数列の集合から任意に1つ選んでr1とおく。
第2列目の決定番号が(100^100)^100となる条件は、
しっぽの先が*,2,2,2,2,2,・・・と2が続く類の代表元が
・(100^100)^100-1番目が2ではない。
・(100^100)^100番目以降2が続く。
を満たすことである。
上記をみたす実数列の集合から任意に1つ選んでr2とおく。
上の代表元r1,r2を含んだ『代表元の袋』を用いて、確率1/2で箱の中身を当てられることを実例で示す。
すなわち、箱の1列目を最初に開けるか、2列目を最初に開けるか、
少なくともどちらかの選択によって、箱の中身が当てられることを示す。
なおゲーム開始前のプレイヤーは箱の中身を知らないことに注意する。
プレイヤーにとって1列目と2列目の決定番号d1,d2∈Nは未知であり、
どちらの列から開ければ
勝利条件:『最初に開けた列の決定番号 ≧ 開けずに残しておいた列の決定番号』
を満たすかをゲーム開始前に知ることはできないことに注意する。
(続く)
92(2): 132人目の素数さん [sage] 2016/01/23(土) 12:51:14.74 ID:Vgp44hJm(2/6) AAS
>>91の続き
ゲームを開始。時枝の戦略に従って箱を開けていく。
まずプレイヤーは下記CASE1とCASE2のどちらか一方を選ぶ。
(たとえばコイントスで決める。)
CASE1) 最初に1列目を開け、2列目を開けずに残しておく。
CASE2) 最初に2列目を開け、1列目を開けずに残しておく。
先に述べた注意から、
勝利条件:『最初に開けた列の決定番号 ≧ 開けずに残しておいた列の決定番号』
をみたす確率は1/2であることに注意する。
(続く)
95(1): 132人目の素数さん [sage] 2016/01/23(土) 13:56:10.66 ID:Vgp44hJm(5/6) AAS
>>28
> 例はなんでも良いです。但し、具体的数値でね。文字は使わずに
> 中学生が混乱しない具体例の説明願います
>
> でも、具体例の実行できないでしょ?
> 実行できるはずがない
> だって、トリックだもの
> 実行できない時枝解法。だから一見最もらしいと言える
このように言うスレ主に対して、俺は具体例>>30を提示した。
スレ主の『実行できない』という主張が明確に否定されたにも関わらず、
>>61
> 2,2,2,2,2,2,・・・をなぜ選ぶのか? 選んでも良いが、本来無作為に選ぶべきところ、作為が入っているのでは?
> (中略)
> 再度強調しておく。d1=3の場合と,d1=100万の場合とでは、当然d2≦d1となる確率は違う。
などと引き続き難癖をつけてくる。
スレ主によると
>>61
> 2.上記1の補足だが、nには上限がない。だから、n<=100万よりも、n>100万の方が、
> 場合の数としては圧倒的に多い。ここまで書けば、言いたいことはお分かりだろう
>>62
> d1=3の場合と,d1=100万の場合とでは、当然d2≦d1となる確率は違う。
とのこと。つまるところ、ほとんどの場合決定番号は非常に大きな値を取り、
そのとき時枝戦略は機能しないと主張している。
(中学生以上の方にはお分かりかと思うが、スレ主は事前確率と事後確率を区別できていない。)
仕方がないので決定番号をスレ主に自由に選ばせることにした。
スレ主はd1=100、d2=(100^100)^100を選んだ。
それに対して俺は>>91-94で成功確率がこの場合も1/2であることを示した。
2つの具体例を併せて考えれば、確率を決めるのは『決定番号の大小関係』であって、
『決定番号の絶対値や差の大きさ』ではないことに小学生でも気付けるはずだ。
*,1,1,1,・・・の類と*,2,2,2,・・・の類の代表元が具体的に決まれば(すなわち選択公理を認めるならば)、
それがどんな元であれ>>30や>>91-94で実行した戦略をまったく同じようになぞることができる。
冗談抜きにこれは小学生でもできる。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル アボンOFF
ぬこの手 ぬこTOP 0.035s