[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
600(2): 現代数学の系譜11 ガロア理論を読む [] 2016/05/04(水) 22:17:08.72 ID:vN4s28Oq(15/18) AAS
>>599 ”well defined”続き
>>3"時枝はいう
私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= no → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる."
で、下記
https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82
(抜粋)
同値類
集合 S の上に同値関係 〜 が定義されているときには、ある S の元 a に対して a に同値である元を全て集めた集合を考えることができる。
この S の部分集合を a を代表元(だいひょうげん、英: representative)とする同値類(どうちるい、英: equivalence class)と呼び・・
1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)
商集合
集合S の同値関係〜に関する同値類全体のなす集合を、S を同値関係〜で割った集合、あるいは S の 〜 による商集合(しょうしゅうごう、英: quotient set)と呼び、
S/〜 := {[x] | x ∈ S}
と表す。集合 S の元にそれが属する同値類を対応させることで、商集合への全射
π: S → S/〜; x → [x]
が自然に与えられる。これを同値関係 〜 に付随する標準射影あるいは自然な射影、自然な全射などと呼ぶ。
(引用おわり)
607(4): 現代数学の系譜11 ガロア理論を読む [] 2016/05/04(水) 22:58:26.78 ID:vN4s28Oq(16/18) AAS
>>600 ”well defined”続き
同値関係、商集合
”well defined”であるために
1)1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である
2)ある元が、異なる二つの同値類に属すことがあってはならない
2)については、当たり前すぎて明記されていないが、すぐ分かるだろう
そこで、>>559に戻ると、箱の数n(=箱の数の長さ)で、n=3を考えると(>>560の列の長さ3に同じ)、
箱の数を先頭から、x1,x2,x3の数列として、同値類はx3のみで決まるべき
(もちろん、X,x2,x3 (Xは任意)というx2,x3という2つの数で決まる同値類も考えられる。が、もしそれを許すと、X,x2,x3は、同値類x3にも属し、従って、二つの同値類に属すことになる。つまり、”well defined”ではなくなる
ここで、n=3を考えたが、nは有限であれば、上記同様常に最後尾の箱で類別されるべきである。もし、最後尾以外の箱を含めた同値類を同時に考えるなら、上記同様二つの同値類に属す数が存在し、”well defined”ではなくなる
そういう目で見ると、同値関係、商集合の”well defined”を、果たして>>568は理解しているのかと、疑問に思う
そして、>>569-576の批判は、同値関係、商集合の”well defined”の理解の程度を批判しているのかも・・
さらに、>>562も、同値関係、商集合の”well defined”という視点から批判すれば、何が言いたいのか、趣旨が分からない
「Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0」と「Xiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...」???
どういう同値関係で、どういう商集合なんだ?
「極限の取りかたは他にもあって」??? あなたのいう「極限の取りかた」は、どういう同値関係で、どういう商集合かを、その定義をはっきりさせてほしい
627: 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 10:32:45.49 ID:tEqEfy29(7/18) AAS
>>615
どうも。スレ主です。
>スレ主が>>607や>>613で"怪しい"とか"well-definedでない"などと
>主張している同値関係(推移律)は記事のp.36でハッキリと証明済なのである。
ここも批判しておこう
季節は5月。新入生や、大2、3回の進級生もいるから
確かに、同値関係の推移律は、p.36で証明済。そして、反射律や対称律は自明である。その話は、https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82 >>600 にある通り
が、”well defined”は、それだけで満たされるものではない https://ja.wikipedia.org/wiki/Well-defined >>14
つまり、ある集合に対し、同値の取り方は複数考えられる。それについては、>>607で書いた
例えば、複数考えられる同値類のどれを選択するか。それは、解く問題によって変わるべき
分かり易い例で、小学生の身長と体重の調査をしたとする。それを類別するに、
1.男女で分ける
2.学年で分ける
3.生まれ月で分ける
などが考えられるだろう
普通、なにか意味ある調査結果をまとめたいと思うなら、さらに
4.(男女)x(学年別)あるいは、
5.(男女)x(学年別)x(生まれ月)
と細かく類別するだろう
上記1〜5すべて、推移律が成り立ち、数学的にも同値関係として正しい
が、もし3の生まれ月の類別だけで、身長と体重の平均値や分布を見せられたら? 「その意味は?」「学年別には?」「男女で分けてないのか?」とつっこむのが普通だろう
(∵ 男女の比率が1対1でないとか、ある月の生徒に低学年が多いとか、偏りをチェックしておかないとまずいから)
つまり、”複数考えられる同値類のどれを選択するか? それは、解く問題によって変わるべき”だと
そして、問題の可算数列のしっぽによる同値類の分類が、果たして、問題を解く手法として"well-definedか”どうかについては、推移律の証明だけでは不十分だよ
季節は5月。新入生や、大2、3回の進級生もいるので、重ねて強調しておく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s