[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
6
(4): 現代数学の系譜11 ガロア理論を読む [] 2016/01/15(金) 23:27:49.43 ID:d++PCd/C(6/7) AAS
>>2-5
一貫校の秀才中学生にも分かるように、「時枝解法が成り立たない」ことを解説する
記号を整備しておく

実数の集合R、有利数の集合Q、整数の集合Z
実数列の集合 R^Nにならって、有利数列の集合 Q^N、整数列の集合 Z^N

あと、一桁の整数の集合Z<1>={1,2,3,4,5,6,7,8,9}、同様に2桁の整数の集合Z<2>、・・・、n桁の整数の集合Z<n>
ついでに、n桁以下の整数の集合Z<-n>としよう。Z<-n>の濃度card(Z<-n>)≒10^n(10のn乗)だ
9
(4): 現代数学の系譜11 ガロア理論を読む [] 2016/01/16(土) 00:27:16.62 ID:Y3KfUbj9(2/21) AAS
(お断り)
>>6-8では、正の数に限定しています。(負の数でも可だが、負の数を除いても、本質は同じだから)

さて私は、前スレ>>713で、箱に電話番号を入れることを提案した
・簡単のために、10桁の整数を入れるとしよう
・数列は、>>6の記号でZ<10>^Nに属する
・もし、>>8と同じように、あなたに、「箱には、電話番号を使って、各10桁の数字を入れた」と宣言しよう
 (例えば、簡単に東京の03-xxxx-yyyyで、0を1に置き換えて、13-xxxx-yyyyとすれば良い)
・お分かりのように、もし、それを聞いたあなたが、数字を当てたいならば、数列の同値類と代表元は、Z<10>^Nから選ぶべき
・もし、実数列R^Nから選べば、的中確率はぐんと落ちる(実数列R^Nから選んで、10桁の整数が出る理屈がない)

・さて、時枝理論の1/100や1/2を思い出そう
・Z<10>^Nから同値類を選ぼうが、R^Nから選ぼうが、各列の条件は同じだから、1/100なり1/2なりは不変。それは正しい
・でも、上記の通り的中確率は変わっている*)
・だから、ここがマジックだと

*)10桁の整数になれば、的中の確率は、1/100さえありえない
が、各列の条件が同じだから、ある列が100列中1番になる確率は1/100であることは不変で、正しい。R^NであろうがZ^NであろうがZ<10>^Nであろうが

では
18: 現代数学の系譜11 ガロア理論を読む [] 2016/01/16(土) 08:16:23.91 ID:Y3KfUbj9(8/21) AAS
>>11
どうも。スレ主です。
レスありがとう

>>6-9は、一貫校の秀才中学生にも分かるように、新たに書き下ろした
(基礎となる時枝解法も>>2-4に引用して)
従って、例も新しく追加した(分かり易い例として)
が、主張は、終始一貫している。時枝トリック
時枝トリックの謎解きは、確かに紆余曲折したと思う
だから、>>6-9>>12-15を見て貰えれば。数学的な内容は、前スレの後半からは変わっていない
19
(2): 現代数学の系譜11 ガロア理論を読む [] 2016/01/16(土) 08:45:53.53 ID:Y3KfUbj9(9/21) AAS
つづき
>>11
>何十回も同じことを言っている気がするが、時枝の戦略はそのような確率を扱わない。
>『箱の中身が属するZ<10>^Nの類を、R^Nの同値類から正しく選べるかどうかは確率的に決まる。その確率はほぼゼロである』
>スレ主はこのようなことを主張しているのだろう。
>しかしR^Nの同値関係~に矛盾がなければ、
>ある実数列(あるいは整数列)がR^N/~のどれに属するかは
>同値類への自然な射影R^N→R^N/~により自然に決まるのであって
>スレ主が言うように確率的に類が選ばれるのではない。

それは言えないだろ
時枝は、「念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.」>>3
という。だから、sとs'とs"と、少なくとも、この3つは、代表候補であり、sとs'とs"と、どれを代表にしようが、定義には矛盾しない
で、代表候補は3つに限らない。s,s',s",・・・と基本は無限にある(考えている集合がR^Nだから。(ここは、Z^Nでも同じ))
(念のため時枝引用「〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.」>>3

そして、(>>6の記号で)
当然ながら、
実数の集合R⊃有理数の集合Q⊃整数の集合Z
実数列の集合 R^N⊃有理数列の集合 Q^N⊃整数列の集合 Z^N

で、整数列の集合 Z^Nで、同値類を決めて、代表を決める。それはR^Nにも含まれる
が、逆は言えない。R^Nで、しっぽの先が全て整数の数列があるとして、ねもとは、整数とは限らないから。だから、代表はZ^Nに属するとは言えないだろ

だから、自然な射影というところが、数学的には不適切だと思う
だから、ねもとまで整数と分かっている数列なら、Z^Nを使う方がR^Nを使うより圧倒的に有利(自然に決まるとは言えない)
20: 現代数学の系譜11 ガロア理論を読む [] 2016/01/16(土) 08:51:58.46 ID:Y3KfUbj9(10/21) AAS
おっと、訂正
>>6

実数の集合R、有利数の集合Q、整数の集合Z
実数列の集合 R^Nにならって、有利数列の集合 Q^N、整数列の集合 Z^N
 ↓
有利数:有理数
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s