[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
560
(9): 現代数学の系譜11 ガロア理論を読む [] 2016/04/29(金) 00:09:31.34 ID:9+oibUNZ(1) AAS
>>559 つづき

”問題A5:箱がN個、N=mxn”で、m=100が、時枝(ルーマニア)解法でnが有限の場合だ

そこで、”問題A3:箱が四個”を考えてみよう。m=2,n=2とできる。2列で、列の長さ2。列の長さ2の数列を類別し、代表元を決めておく。
どちらかの列を開けて数列を見る。類別が決まり、代表元が分かる。で、決定番号は確率としては、2だ。なぜなら、箱に入る可能性があるのは非加算無限の実数だから、代表元と数列が一致する可能性は、確率としてはゼロだ
決定番号のうちの最大値D=2。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

”問題A4:箱が六個”を考えてみよう。m=2,n=3とできる。2列で、列の長さ3。列の長さ3の数列を類別し、代表元を決めておく。
上記と同様に、決定番号は確率としては、3だ。なぜなら、2番目の箱に入る可能性があるのは非加算無限の実数だから、代表元と2番目の箱数が一致する可能性は、確率としてはゼロだ
決定番号のうちの最大値D=3。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

同様に考えて、”問題A5:箱がN個、N=mxn”で、決定番号のうちの最大値D=n。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

そして、N=mxnでn→∞の極限を取ったらどうなるか?
再度言う、"(1)無限を直接扱う,"というトリックをやっているのは、ルーマニア解法じゃないのか
562
(6): 132人目の素数さん [sage] 2016/04/29(金) 20:13:24.83 ID:p7s/3faH(1) AAS
>>559-560
極限の取りかたは他にもあって
任意の実数をXiと書くことにして
Xiが1個, 0が 99個 : X1, 0, 0, 0, 0, ... , 0
Xiが2個, 0が198個 : X1, X2, 0, 0, 0, ... , 0
Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0
あるいは
全ての項が等しい無限数列を用意する ex. (0, 0, 0, ... )
Xiが1個, 0が可算無限個 : X1, 0, 0, 0, 0, ...
Xiが2個, 0が可算無限個 : X1, X2, 0, 0, 0, ...
Xiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...
(数当ては上の数列の中の0に相当する部分を当てる)

スレ主は最初から数当てが不可能な数列のみを考えている
607
(4): 現代数学の系譜11 ガロア理論を読む [] 2016/05/04(水) 22:58:26.78 ID:vN4s28Oq(16/18) AAS
>>600 ”well defined”続き

同値関係、商集合
”well defined”であるために
1)1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である
2)ある元が、異なる二つの同値類に属すことがあってはならない

2)については、当たり前すぎて明記されていないが、すぐ分かるだろう
そこで、>>559に戻ると、箱の数n(=箱の数の長さ)で、n=3を考えると(>>560の列の長さ3に同じ)、
箱の数を先頭から、x1,x2,x3の数列として、同値類はx3のみで決まるべき
(もちろん、X,x2,x3 (Xは任意)というx2,x3という2つの数で決まる同値類も考えられる。が、もしそれを許すと、X,x2,x3は、同値類x3にも属し、従って、二つの同値類に属すことになる。つまり、”well defined”ではなくなる

ここで、n=3を考えたが、nは有限であれば、上記同様常に最後尾の箱で類別されるべきである。もし、最後尾以外の箱を含めた同値類を同時に考えるなら、上記同様二つの同値類に属す数が存在し、”well defined”ではなくなる

そういう目で見ると、同値関係、商集合の”well defined”を、果たして>>568は理解しているのかと、疑問に思う
そして、>>569-576の批判は、同値関係、商集合の”well defined”の理解の程度を批判しているのかも・・

さらに、>>562も、同値関係、商集合の”well defined”という視点から批判すれば、何が言いたいのか、趣旨が分からない
「Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0」と「Xiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...」???
どういう同値関係で、どういう商集合なんだ?

「極限の取りかたは他にもあって」??? あなたのいう「極限の取りかた」は、どういう同値関係で、どういう商集合かを、その定義をはっきりさせてほしい
614: 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 00:53:13.86 ID:tEqEfy29(2/18) AAS
>>559-560 補足

>>176数学セミナー201511月号P37 時枝記事引用の前に、次の一文がある

「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」

ルベーグと聞いて思い出したところで、ルベーグ測度論に、零集合がある
https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96
可測集合 S が μ (S ) = 0 であるとき零集合 (null set ) という。

ディリクレの関数(有理数Qのみで1,それ以外ではゼロを取る関数)で、ルベーグ積分 0
https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%AA%E3%82%AF%E3%83%AC%E3%81%AE%E9%96%A2%E6%95%B0
ディリクレの関数(ディリクレの-かんすう)とは、実数全体の成す集合 R 上で定義される次のような関数のことである。

ディリクレの関数はリーマン積分不可能であることが分かる。
(ルベーグ積分は可能で、その値は 0 である。これは、可算無限集合である Q はルベーグ測度に関して零集合であることによる)
(引用おわり)

で、言いたいことは、>>559-560 での問題A6だ
問題A6:箱が可算無限個、N=mxnでn→∞。とすると 決定番号も→∞になる
いや、もちろん、例外として決定番号が有限になる場合もあるよ。だが、それは零集合 (null set )だ。”実数R全体 vs 有理数Q全体” のごとし。確率で言えばゼロ!
622
(2): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 08:48:00.70 ID:tEqEfy29(3/18) AAS
>>619
どうも。スレ主です。
なんだ、そこで騙されていたのか?

>>134は、”期待値”としての決定番号Dを言っている。
なぜなら、時枝記事は、ルーマニア解法として、可算無限長の数列のしっぽによる同値類分類による解法を提示した。
これは、特定の場合に成り立つ解法としてでなく、一般解法としての提示だ。
だから、>>559-560に、数列の長さnの有限モデルから、n→∞として、”期待値”としての決定番号Dが、D→∞を示した。

一方、>>137の背理法の「有限の値でないと仮定すると、その元はどこまでいっても代表元と一致しない」という主張は、確かに一つの特定の元を取ればそうだろう
しかし、その有限の決定番号がdとして、一方類別された集合の元は、可算無限あるから、常にdより大きな元、例えばd<Dとできる元が存在する

再び強調すれば、そのような元(d<Dとできる)は、常に可算無限個存在する
∴”期待値”としての決定番号Dは、D→∞
623
(3): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 08:48:48.41 ID:tEqEfy29(4/18) AAS
>>622
ところで、>>559-560に示したモデルに対して、あなたは、別のモデルも可能だと>>562を書いた
>>562に対しては、>>569ID:oT//FcJnさんから、「貴方は貴方で支離滅裂。」と批判されていたね
>>562は、いまでも有効なのか? それとも取り下げたのか?

そして、>>562に書いた「スレ主は最初から数当てが不可能な数列のみを考えている」という>>559-560に対する批判はそれだけか?
「スレ主は最初から数当てが不可能な数列のみを考えている」というのは、随分と文学的だ
数学的批判は、無いのか?
数学のモデルとして、>>559-560に示したモデルと>>562のあなたのとは、並立可能なのか?
624
(1): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 08:49:35.13 ID:tEqEfy29(5/18) AAS
>>623 補足
>>559で書いたように、時枝のいうルーマニア解法に対する批判は、可算無限長の数列のしっぽによる同値類分類は、「"(1)無限を直接扱う,"というトリックをやっている」と
つまり、あなたが>>615で書いた、時枝は「同値関係(推移律)は記事のp.36でハッキリと証明済」という件は、"(1)無限を直接扱う,"というトリックの上でだ

>>559-560に示したモデルでも、長さ有限の場合に、同値関係(推移律)はきちんと成り立っている。そして、n→∞の極限を考えている
そのモデルの上で、ルーマニア解法が一般解法(特定の場合に限定されない)としてどうかと。期待値としてD→∞を示した。

批判のキモは、「"(1)無限を直接扱う,"というトリックをやっている」のはルーマニア解法だと
そして繰り返す。>>559-560に示したモデルに対して数学的批判(数学的に不成立とか)はないのか? >>562は取り下げたのか?
あなたが成すべきことは、時枝が記事に書いた「(2)有限の極限として間接に扱う」の方針に沿って、ルーマニア解法を有限モデルからの極限として説明すること
もし、それが出来ないなら、「"(1)無限を直接扱う,"というトリックをやっている」のはルーマニア解法だという主張は成立すると思うよ
629
(1): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 10:53:15.83 ID:tEqEfy29(9/18) AAS
>>623で、「数学のモデルとして、>>559-560に示したモデルと>>562のあなたのとは、並立可能なのか?」と問うた

「数学基礎論」の示すところ、無限を扱うとき、公理系の選び方で、「特定の公理系では証明も反証もできない問題が数多く見いだされた」という(例えば下記)
だから、並立可能なのかも知れない。が、反論はあなたの番だよ。
>>559-560に示したモデルを(数学的に)否定するか、>>562を守るか、別の有限モデルからの極限として時枝解法を示すか
数学的には、3択問題と思うがどうよ

https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E%E8%AB%96
数学基礎論
ヒルベルトは、数学を記号によるゲームとみなして無矛盾性を証明する形式主義によるヒルベルト・プログラムを提唱したが、ゲーデルの不完全性定理によって、その実現の不可能性が示された。
また、数論を展開するのに十分な体系に見えるペアノの公理系では証明できないグッドスタインの定理など、特定の公理系では証明も反証もできない問題が数多く見いだされた。

https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%83%E3%83%89%E3%82%B9%E3%82%BF%E3%82%A4%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86
グッドスタインの定理(グッドスタインのていり、Goodstein's theorem)は、数理論理学における自然数に関する命題であり、「全てのグッドスタイン数列は必ず0で終わる」という主張。
ペアノ算術の範囲では証明も否定の証明もできないが、集合論の公理系、特に無限集合の公理を用いると真であることが言える。
たとえばゲーデルの不完全性定理から導かれる決定不能な命題などは、いかにも不自然だったり人工的に見えたりする場合があるのに対し、この定理は「自然な」決定不能命題の例として知られる。
(抜粋引用おわり)
633
(1): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 11:55:15.71 ID:tEqEfy29(10/18) AAS
さて、計算複雑性の切り口で、時枝問題を見てみよう
「理論上計算可能な問題であっても、実際に解くことができない問題を intractable(手に負えない、処理しにくい) であるという。」というそうだ(下記)

「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」と、ルーマニア解法はいう
この同値類の集合は、非加算無限ある(∵箱が1つとしても、その箱に入るのは任意の実数だから、非加算無限ある)

となれば、「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」という前処理自身が、intractableでは?
前処理自身が、intractableであるとすれば、ルーマニア解法は現実的解法としては、使えない

ただし、「理論上計算可能な問題」か否かは残る。
「理論上計算可能な問題」か否かについては、>>559-560で示した通り、私の意見は否

https://ja.wikipedia.org/wiki/%E8%A8%88%E7%AE%97%E8%A4%87%E9%9B%91%E6%80%A7%E7%90%86%E8%AB%96
計算複雑性理論

理論上計算可能な問題であっても、実際に解くことができない問題を intractable(手に負えない、処理しにくい) であるという。
「実際に」解けるとはどういうことかという問題もあるが、多項式時間の解法がある問題が一般に(小さな入力だけでなく)解けるとされている。
intractable な問題として知られているものとしては、EXPTIME完全な問題がある。

指数関数時間の解法がなぜ実際には使えないかを考えるため、2^n 回の操作を必要とする問題を考える(n は入力のサイズである)。
比較的小さな入力数 n = 100 のときについて、1秒間に 10^10 (10 ギガ)回命令を実行できる計算機を想定すると、その問題を解くには約 4*1012 年かかる。
これは現在の宇宙の年齢よりも長い。

https://ja.wikipedia.org/wiki/%E8%A8%88%E7%AE%97%E5%8F%AF%E8%83%BD%E6%80%A7%E7%90%86%E8%AB%96
計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。
651
(1): 現代数学の系譜11 ガロア理論を読む [] 2016/05/05(木) 21:44:25.08 ID:tEqEfy29(18/18) AAS
同値類ね〜

>>560に戻ろうか
”問題A4:箱が六個”を考えてみよう。m=2,n=3とできる。2列で、列の長さ3。列の長さ3の数列を類別し、代表元を決めておく。

s = (s1,s2,s3 ),s'=(s'1, s'2, s'3 )∈ R^3

この場合、
1)先頭から3番目、つまりs3をしっぽと見て、同値類を考えることができる。
  つまり、s = (s1,s2,s3 ),s'=(s'1, s'2, s3 ) のとき、s 〜 s' (∵ s3 が一致)
  時枝にならって、推移律を見よう。s' 〜 s''のとき、s''=(s''1, s''2, s3 ) となるから(∵ s3 が一致)
  s 〜 s''となり、推移律成立。この場合 n0=3
2)同様に、先頭から2番目、つまりs2,s3をしっぽと見て、同値類を考えることができる。
  つまり、s = (s1,s2,s3 ),s'=(s'1, s2, s3 ) のとき、s 〜 s' (∵ s2,s3 が一致)
  時枝にならって、推移律を見よう。s' 〜 s''のとき、s''=(s''1, s2, s3 ) となるから(∵ s2,s3 が一致)
  s 〜 s''となり、推移律成立。この場合 n0=2
3)つまり、列の長さ3の数列を類別するとき、上記のように、n0=3と、n0=2の二つの類別が考えられる
4)しかし、n0=3とn0=2の二つの類別を混在させることはできない。
  ∵例えば、s = (s1,s2,s3 )は、二つの同値類( x, y, s3 )にも、( x,s2, s3 )にも属するから(但し、x, y,は任意の数を表す)

さて、
A)列の長さnの数列を類別するとき、同様に、n0=2 〜 n とする類別が考えられる
  推移律が成り立つことは、上記同様に示せる。また、上記同様に、二つ以上の類別を混在させることはできない。
  ∵一つの集合の元が、複数の同値類に属することになり、同値類別が一意にならない
B)列の長さnにつき、極限として、n→∞(可算)を考えることができる
  この場合、n0を任意の整数に選ぶことができるだろう。しかし、A)と同様に、二つ以上の類別を混在させることはできない。

おかしいですか?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル アボンOFF

ぬこの手 ぬこTOP 0.198s*