[過去ログ] 現代数学の系譜11 ガロア理論を読む16 [転載禁止]©2ch.net (683レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
650
(4): 132人目の素数さん [sage] 2015/11/27(金) 16:04:59.09 ID:qRNBmtTR(1/5) AAS
>>556
[第1段](任意のε>0に対して、開区間I(ε)に含まれるような、ハメル基底の存在性):
ε>0とする。すると、I(ε)=(-ε,ε)。ここに、実数直線R上で有理数は稠密なることに
注意する。εに対し、L(ε)を、開区間I(ε)に含まれるような、実数体Rの有理数体Q上の
一次独立な部分集合全体の族とする。以下、L(ε)をLで略記する。すると、有理数の稠密性
から、RのQ上一次独立な部分集合 {√2} に対し、或る a∈Q が存在して、{a√2}∈L となる
から、L≠Φ。Lは集合の包含関係⊂について、半順序集合である。Aを添数集合とする。
{I_α|α∈A} をLの全順序部分集合とする。ここに、各α∈Aに対して I_α は開区間I(ε)では
ない。S=∪_{α∈A}(I_α) とする。n∈N\{0} とする。x_1,…,x_n∈S とする。すると、
x_1,…,x_n をすべて含むような或る S_α(α∈A) が存在して、S_α はRのQ上一次独立な
部分集合だから、{x_1,…,x_n} はQ上一次独立である。自然数 n∈N\{0}、Sの元 x_1,…,x_n は
任意でよいから、任意の α∈A について、SはI_αのすべての点を含むLの元であり、I_α⊂S で
ある。また、SはQ上一次独立な集合である。そして、任意の α∈A に対して、S_α⊂S だから、
Sは {S_α|α∈A} のLにおける上界である。従って、Zornの補題から、LつまりL(ε)には極大元が
1個以上存在する。その極大元を H(ε) とする。H(ε) は開区間 I(ε) に含まれる、
実数体Rの有理数体Q上の一次独立な部分集合全体の族だから、H(ε) はハメル基底の
定義の条件を確かにすべて満たす。従って、H(ε) は開区間 I(ε) に含まれるような、
ハメル基底である。ε>0は任意でよいから、任意のε>0に対して、開区間 I(ε) に含まれる、
ハメル基底 H(ε) が存在する。
651
(1): 132人目の素数さん [sage] 2015/11/27(金) 16:06:37.42 ID:qRNBmtTR(2/5) AAS
>>556
(>>650の続き)
[第2段](上下に有界な体Rの体Q上の超越基底Sの存在性):定義から、任意のε>0に対して、
開区間I(ε)に含まれるような、ハメル基底に含まれる、実数体Rの有理数体Q上の超越基底S(ε)は
存在し、上下に有界である。従って、上下に有界な体Rの体Q上の超越基底Sは存在する。

ここに、Sを上下に有界な実数体Rの有理数体Q上の超越基底と仮定しても一般性は失わない。
定義から、包含関係は、S⊂Q(S)⊂R。

[第3段](Q(S)≠Φ はRの真部分集合):定義から、RはQ(S)の代数拡大体だから、Q(S) 上代数的な
Rの点が存在する。従って、或る、Q(S) 上代数的なRの点aが存在して、aは Q(S) には属さないRの点である。
従って、Q(S)≠Φ はRの真部分集合である。

[第4段](S、Q(S)、R の濃度は連続体濃度cに等しい):S⊂Q(S)⊂R だから、card(S)≦card(Q(S))≦card(R)。
また、card(S)=card(R)=c。従って、ベルンシュタインの定理から、card(S)=card(Q(S))=card(R)=c。

[第5段](Q(S)は完全集合):体 Q(S) を完全集合ではないとする。すると、Q(S) の或る点 y∈Q(S) が
存在して、yは Q(S) の孤立点となる。また、実数直線R上で、有理直線Qは稠密で、任意の r∈Q について、
rはQの触点でrの閉包は {r} だから、yは有理数ではない。従って、y∈S。Rは Q(S) 上代数拡大体だから、
yは体 Q(S) 上代数的である。従って、yの R/Q(S) への最小多項式の次数をnとすれば、
何れも或る a_0,a_1,…,a_n∈Q(S) に対して、a_0≠0, a_n≠0 であり、
a_0・y^n+a_1・y^{n-1}+…+a_{n-1}・y+a_n=0 …@ となる。
しかし、定義から、Sの点yはQ上超越的だから、すべての i=0,1,…,n に対して a_i がQ上代数的なることは、
あり得ない。従って、或る i=0,1,…,n が存在して、a_i はQ上超越的となる。つまり、a_i は超越数となる。
そこで、Y={a_0,a_1,…,a_n} とおき、X={a_i∈Y|a_iは超越数} とする。すると、X≠Φ。
652
(1): 132人目の素数さん [sage] 2015/11/27(金) 16:10:28.56 ID:qRNBmtTR(3/5) AAS
>>556
(>>651の続き)
a_i∈X とする。すると、X⊂Y から a_i∈Y。そして、a_i∈R\Q であって、同時に a_i∈Q(S) だから、
a_i に対して或る自然数 m(a_i) が定まり、自然数 m(a_i) を m_i で略記すれば、m_i に対して何れも或る、
m_i 変数 z_1, …, z_{m_i} の有理関数 f_{m_i}∈Q(z_1,…,z_{m_i}) と m_i 個の点
{z(i)}_1 , … , {z(i)}_{m_i}∈S が存在して a_i=(f_{m_i})({z(i)}_1 , … , {z(i)}_{m_i}) となる。
Xの点 a_i は任意でよいから、各 a_i∈X に対して、a_i を表す、何れも或る、
f_{m_i}∈Q(z_1,…,z_{m_i}) と m_i 個の点 {z(i)}_1 , … , {z(i)}_{m_i}∈S、及び有理関数の形をした式
a_i=(f_{m_i})({z(i)}_1 , … , {z(i)}_{m_i}) が定まる。ここで、仮に、各 a_i∈X に対して定まるような、
a_i を表す有理関数の形をした式 a_i=(f_{m_i})({z(i)}_1 , … , {z(i)}_{m_i}) における有理関数 f_{m_i}
のすべてが定数ではないとして、各 a_i∈X に対して定まる a_i を表す有理関数の形をした式
a_i=(f_{m_i})({z(i)}_1 , … , {z(i)}_{m_i}) を、同時にすべて@にすべて同時に代入して両辺を整理すると、
有限個のSの点 y , {z(i)}_1 , … , {z(i)}_{m_i} , … は体Q上代数的従属なることが分かり、
とりわけ y∈S ではなくなり、y∈S に反し矛盾が生じる。従って、或る a_i∈X が存在して、
a_i に対して定まるような、a_i を表す有理関数の形をした式 a_i=(f_{m_i})({z(i)}_1 , … , {z(i)}_{m_i})
における f_{m_i}∈Q(z_1,…,z_{m_i}) は定数となる。つまり、f_{m_i}∈Q であって、従って a_i∈Q。
しかし、a_i はQ上代数的だから、定義から、a_i は a_i∈S を満たさず、矛盾する。
従って、Q(S) は完全集合であり、Q(S) の任意の点は集積点である。     (第5段終了)
653
(1): 132人目の素数さん [sage] 2015/11/27(金) 16:12:15.66 ID:qRNBmtTR(4/5) AAS
>>556
(>>652の続き)
[第6段](Q(S)は零集合):Q(S) の外測度を m(Q(S)) とする。m(Q(S))>0 とする。定義から、実数体Rは
体 Q(S) の代数拡大体である。体 Q(S) 上超越的なRの点は存在しないから、R\Q(S) は体 Q(S) 上代数的な
実数全体の集合である。ここに、体 Q(S) 上代数的な実数kを適当に取る。K=(Q(S))(k) とおく。すると、
Kは体の拡大 R/Q(S) の中間体で、Rの真部分集合である。体Kの外測度を m(K)、実数体Rの外測度を m(R) とする。
すると、m(Q(S))>0 と仮定したから、Q(S)⊂K⊂R から 0<m(K)≦m(R)=+∞。実数体Rの有理数体Q上の
超越基底Sは上下に有界と仮定しているから、0<m(K)<m(R)=+∞。Kの内測度を m'(K) とする。
Kは上下に非有界でコンパクトではないから、定義から、m'(K)=+∞。従って、m(K)<m'(K)。
Kが可測なための必要十分は m(K)=m'(K) だから、中間体Kは非可測である。しかし、これはKが可測なことに反し、
矛盾する。従って、m(Q(S))=0 で、体 Q(S) は零集合である。

[第7段](S、Q(S)は非可算零集合):超越基底Sの外測度を m(S) とすると、S⊂Q(S) から、m(S)≦m(Q(S))=0
から、m(S)=m(Q(S))=0。また、card(S)=card(Q(S))=c。従って、S、Q(S)は非可算零集合である。

Sは上下に有界な実数体Rの有理数体Q上の超越基底としていたから、
元の超越基底S、元の体Q(S)も、どちらも非可算零集合である。
654: 132人目の素数さん [sage] 2015/11/27(金) 17:39:05.66 ID:qRNBmtTR(5/5) AAS
>>556
あ、>>650の最初に
>任意のε>0に対して定まる開区間(-ε,ε)を、I(ε)=(-ε,ε) で表わす。
を書くの忘れた。第1段はその後に続く。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s