[過去ログ] 現代数学の系譜11 ガロア理論を読む16 [転載禁止]©2ch.net (683レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
665(2): 132人目の素数さん [sage] 2015/11/28(土) 07:44:41.30 ID:gImjm0uw(1/7) AAS
>>655
体 K=(Q(S))(k) (kは Q(S) 上代数的な元) について、m(K)=+∞ とする。
仮に上下に有界な超越基底Sに含まれる、或る開区間 I=(-x,x) (∃x>0) を
完備とすると、I⊂S⊂(-ε,ε) (∃ε>x) から、或る a>0 (ε>a>x) が存在して、
Iは閉区間 [-a,a] の真部分集合。だから、或る b>0 が存在して、[-b,b]⊂S から [0,b]⊂S。
体 Q(S) は通常の加減乗除について閉じているから、加減乗除を任意に可算無限回繰り返すと、
[0,b]⊂S から実数体Rが構成出来て、Q(S)=R。従って、Q(S) は完備な順序体Rになる。
しかし、Q(S) はRの真部分集合でRとは異なるから、Q(S) が完備順序体Rになることはなく、
矛盾が生じる。従って、超越基底Sに含まれるような、如何なる開区間 I=(-x,x) (∀x>0) も
完備とはならない。ところが、card(S)=c で、超越基底Sは完全集合だから、Sは自己稠密集合。
従って、体 Q(S) は自己稠密集合で、Q(S)∩[0,1] も自己稠密な集合。m(K)=+∞ としたから、
Rに真に含まれる自己稠密な順序体Kに対し、或る完備な区間 I' が存在して、I'⊂K=(Q(S))(k)。
しかし、体Kの任意の逆元もKの点だから、I' のすべての元に対して何れも或る加減乗除の操作
を有限回施すと、或る ε>0 に対して、すべての点がSに属するような、完備な
開区間 (-ε,ε)⊂S を構成出来る。従って、上下に有界な超越基底Sは或る完備な
区間を含む。これは、矛盾する。従って、m(K)>0 から 0<m(K)<m(R)=+∞ となる。
667: 132人目の素数さん [sage] 2015/11/28(土) 07:59:33.82 ID:gImjm0uw(2/7) AAS
>>666
そのこと忘れてた。第5段では「(Q(S)は完全集合」を示したんだな。
>>665は取り消し。
668: 132人目の素数さん [sage] 2015/11/28(土) 08:54:42.73 ID:gImjm0uw(3/7) AAS
>>655
体 K=(Q(S))(k) (kは Q(S) 上代数的な元) について、m(K)=+∞ とする。
仮に或る開区間 I=(-x,x) (∃x>0) に対して、(Q(S))(k) と (-x,x) の共通部分 K∩I を
完備とすると、体Kは通常の加減乗除について閉じているから、K∩I のすべての元に対して
何れも或る加減乗除の操作を有限回施すと、或る ε>0 に対して、すべての点がSに属する
ような、完備な閉区間 [-ε,ε]⊂S を構成出来る。従って、加減乗除の操作を任意に
可算無限回施すと、[-ε,ε] から実数体Rが構成出来る。従って、Kの点に対して加減乗除を
任意に可算無限回施すとKからRが構成出来て、K=R。従って、Kは完備な順序体Rになる。
しかし、KはRの真部分集合でRとは異なるから、Kが完備順序体Rになることはなく、
矛盾が生じる。従って、如何なる開区間 I=(-x,x) (∀x>0) に対しても、
(Q(S))(k) と (-x,x) の共通部分 K∩I は完備とはならない。ところが、card(S)=c で、
体 Q(S) は完全集合だから、Q(S) は自己稠密集合。従って、体 K=(Q(S))(k) は
自己稠密集合で、K∩[0,1] も自己稠密な集合。m(K)=+∞ としたから、Rに真に含まれる
自己稠密な順序体Kに対し、或る完備な区間 I' が存在して、I'⊃K=(Q(S))(k)。
しかし、体Kは直線R上至る所完備ではなく自己稠密で、Kの任意の点xは触点でxの閉包
は{x}。従って、KはR上稠密で、m(K)=+∞ のときは、m(K)=0、Q(S)⊂K から m(Q(S))=0 となる。
これは、はじめに m(Q(S))>0 と仮定したことに反する。
671(2): 132人目の素数さん [sage] 2015/11/28(土) 09:10:47.75 ID:gImjm0uw(4/7) AAS
>>669
>おっちゃん、どうも。スレ主です。
>実に面白いね、おっちゃんって(^^;
>
>>>Sが、実数の超越基底として、Q(S)は超越数全体⊂Rでしょ?
>>間違い。スレ主はQ(S)を勘違いしている。>>658も勘違いを引きずっている。
>
>超越基底の「基底」の意味を考えていない?
>というか、なんというか・・・
>
>命題:Sが、実数の超越基底として、Q(S)は超越数全体⊂Rである
>証明:超越基底の「基底」の定義そのもの
>QED
これ、超越拡大体 Q(S) の定義の捉え方が間違っている。
一体、何のために私が恥かいて証明したんだよ。包含関係は Q⊂Q(S) も成り立っているぞ。
すべての有理数も Q(S) は含む。
676(3): 132人目の素数さん [sage] 2015/11/28(土) 09:57:18.75 ID:gImjm0uw(5/7) AAS
>>673
>Q(S)は単にQにSを添加した体のことだよな?
そう。Sは非可算集合なる基底でQの超越的な元ではないから、
Q(e)やQ(π)と混同出来ない。Q(e)とかはQ(e)上超越的なRの点があって
代数的独立の概念を考えることが出来るが、体Q(S)では、
Q(S)上超越的なRの点はなく、任意の実数はQ(S)上代数的従属になる。
そのため、体の拡大 R/Q(S) では、代数的独立な実数は存在しない。
680: 132人目の素数さん [sage] 2015/11/28(土) 10:08:09.95 ID:gImjm0uw(6/7) AAS
>>678
Sは、体Q上の線型空間の、濃度が連続体濃度cに等しい基底だな。
Sは1つの集合で、Q上超越的な実数ではない。
681: 132人目の素数さん [sage] 2015/11/28(土) 10:12:44.68 ID:gImjm0uw(7/7) AAS
>>678
まあ、「1つの」は余計かな。実数体Rの有理数体Q上の超越基底は複数個する。
だから、Sはその中の1つとして扱うことになる。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s