[過去ログ] 現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net (562レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
185(7): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:03:25.96 ID:Dy2WdOHw(4/41) AAS
検索したら、こんなのがヒット
http://oshiete.goo.ne.jp/qa/1400683.html
ε-δ論法について 質問者:rockman9 質問日時:2005/05/21
大学1年です。題名通りですが微分積分学に出てくるこの論法が全く理解できません。
教授に聞いても教科書に書いてあることをそのまま説明するしかしないので、その教科書を読んでも理解できないのですから全く意味が無いです。
いきなり分けのわからない変数が2つも出てきますし...
どなたか教科書に出てるような抽象的なものよりも理解しやすい説明がありましたら(独自の説明で構いません!)教えてください!お願いします。
また理解しても問題が解けなければならないので、例題として1問だけ載せてみます。説明の際に利用できるようでしたら是非使ってください!
問
a_n=α+1/n^2 とする。(α>0)
lim(n→∞)a_n=α であることをε-δ論法を用いて証明せよ。
つづく
186(1): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:09:07.12 ID:Dy2WdOHw(5/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答4件 No.4 回答者:betagamma 回答日時:2005/05/22
抜粋
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題ですw
187(1): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:09:54.89 ID:Dy2WdOHw(6/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答4件 No.4 回答者:betagamma 回答日時:2005/05/22
抜粋
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題です
188(1): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:10:43.32 ID:Dy2WdOHw(7/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答4件 No.4 回答者:betagamma
抜粋
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題です
189(1): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:14:29.82 ID:Dy2WdOHw(8/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答4件 No.4 回答者:betagamma
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題です(略)
190(2): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:15:30.29 ID:Dy2WdOHw(9/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答 No.4 回答者:betagamma
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題です(略)
191(1): 現代数学の系譜11 ガロア理論を読む [] 2015/07/18(土) 05:16:28.02 ID:Dy2WdOHw(10/41) AAS
>>185 つづき
http://oshiete.goo.ne.jp/qa/1400683.html
回答 No.4
大学4年です。苦労しますよねw自分は、工学部で応用数学とか情報科学に近いところをやっている人間です。
質問者さんが、何学部何学科にいるかはわかりませんが、学科によっては必ずしもεーδ論法は必要ではないと思うのです。
εーδ論法は大切で、それを使わないと厳密に理解できない応用とかもたくさんありますし、とけないテスト問題もありますが、それ以外に勉強してほしい数学もたくさんあります。
実際、自分の大学では、εーδ論法でつまづく人があまりにも多く、εーδ論法を使うクラスと使わないクラスに、大学1年の時は分かれていました。
3年間大学で勉強したものの感想としては、
情報系・応用数学にいく人は、εーδ論法は、そのうちどこかで出てくると思うので、知っておいた方がいいでしょう。あと、経済工学とかでも、出てくると思います。
ですが、機械・化学・生命化学とかにいく人は、微分方程式と線形代数がわかれば、εーδなんて知らなくてもいいんじゃないかな、と思います。
どうしてかといいますと、結局、εーδは、数学の証明をするときは必要な道具なのですが、逆にそれ以外ではあまり出てこないのです。
そもそも、無限小という考え方は、数学上はできますけど、いざコンピューターをまわして計算しようと思ったら無限小は絶対表現できないので、応用上はあんまり有用ではない訳です。
あと、たぶん 微分方程式・線形代数・ベクトル解析・複素解析とか、だいたいやらされると思います。
微分方程式の解き方とかも、実は応用上は重要じゃないんですよね。
というのは、実際問題、式でとけるような微分方程式を扱うことは少なくて(そんな問題は既にとっくの昔にやられてしまっているので)、コンピューターをまわして数値解法で解く、というのが主流なので、手計算で解けなくてもいいわけですw
ベクトル解析は、divとrotが何かぐらいわかっておいた方が、いいんじゃないかなと思います。線形代数は、最低限行列式が求められればよいのでは?
とかなんとかいってみましたが、これは、四年になったときに、数学を忘れていても最低限これだけできれば、勉強しながらついていけるよ、という話で、これだけで4年にあがれるかどうかは別問題です(略)
198: 132人目の素数さん [] 2015/07/18(土) 09:25:30.06 ID:Dy2WdOHw(15/41) AAS
>>195
どうも。スレ主です。>>185の解答ですね
>>196
おっちゃん、どうも
数学史ありがとう
ε−δ = ワイエルシュトラスと耳たこだったので、そう思っていた
>抽象代数の原点は、ガロア理論ではなく、ルジャンドルやアーベルとかガウスじゃないか。
そこは諸説あるだろう
高瀬 正仁氏なら、ガウスだというのだろうね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s