[過去ログ]
【統計分析】機械学習・データマイニング26 (1002レス)
【統計分析】機械学習・データマイニング26 http://mevius.5ch.net/test/read.cgi/tech/1568506986/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
232: デフォルトの名無しさん (ワッチョイ 653c-b92j [118.240.95.156]) [sage] 2019/10/13(日) 21:45:22.38 ID:kaSZg9r20 >>226 ちょうどいいので>>220で示したXORを例に説明しよう 入力が2次元である(x1, x2)を拡張して3次元の(x1, x2, x3)にしようと思う つまり (0, 0, a) → 0 (0, 1, b) → 1 (1, 0, c) → 1 (1, 1, d) → 0 が出来て(a, b, c, d) = (0, 1, 1, 0)を設定できれば、平面z=0.5で2つの領域に分離できる すなわちx3をx1, x2から作れれば良いので a = w11・x1 + w12・x2 b = w21・x1 + w22・x2 c = w31・x1 + w32・x2 d = w41・x1 + w42・x2 として(w11, w12) = (1, 1), (w21, w22) = (1, 1), (w31, w32) = (1, 1), (w41, w42) = (1, -1)のような重みを設定する a, b, c, dの式をよく見てみると、これは2個のニューロンを1層分増やした式そのものである つまり層を1層増やすということは、次元を増やすことと同値である http://mevius.5ch.net/test/read.cgi/tech/1568506986/232
240: デフォルトの名無しさん (ワッチョイ cb10-vzjJ [153.131.102.129]) [] 2019/10/14(月) 07:16:20.36 ID:KQ95R8h/0 >>232 それだと x1, x2の入力を受けるニューロンと それからx3を計算するニューロンを並列に並べたら良い x1-x1\ x2-x2-out \x3/ みたいに 次元を増やすの意味として変数増加とx^2などと混同しやすい これらを区別する言い方は何? 変数増加→高次元 x^2など→非線形 とか? http://mevius.5ch.net/test/read.cgi/tech/1568506986/240
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s