[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
112(1): 02/04(火)00:34:51.47 ID:kyySIsuH(1/19) AAS
>>111
>抽象的な存在定理から、具体的なベクトルが その空間における基底であることが証明できる
選択関数の存在公理から、具体的な値が、箱入り無数目における確率であることが証明できる
224(1): 02/06(木)07:05:01.47 ID:aNn7qWpe(7/11) AAS
なぜ、γが無限連分数だと矛盾する、と妄想するのかわからん
乙は完全に統合失調症だな
380: 02/08(土)14:18:11.47 ID:i8Inzp5Z(1) AAS
◆yH25M02vWFhP はもうここに書くな
全然面白くない
384(1): 02/08(土)21:09:10.47 ID:j9+iidv9(9/9) AAS
>>382
マジつまんね
大学1年の数学で落ちこぼれた高卒馬鹿の
◆yH25M02vWFhPはここに書くな
632(1): 02/11(火)08:50:41.47 ID:MW1+hP7T(10/61) AAS
・・・と答えようと思ったが一応答えておく
双曲平面の合同変換群の離散部分群が自由群だとしたとき
その基本領域は尖点か境界円にベタっと接する箇所しか持たない
(つまり有限個の領域が接する点を持たない)
・・・と思うが、証明したわけではない
750(1): 02/12(水)04:36:47.47 ID:GYn8T4oZ(5/8) AAS
解析的整数論のネタは面白みを感じない
個人的趣味だが致し方ない
ケチつけんじゃねえ馬鹿
770(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/12(水)11:09:56.47 ID:rAcOLHcf(3/6) AAS
>>763
>そういう人は端的にいって数学に全く興味ないといっていい
>だから数学科などにいかず工学部あたりで職業訓練受けて
>ただの一般人になる
プロ将棋の養成機関で、奨励会がある
一人のプロ棋士誕生のうらに、プロ棋士になれなかった多数の奨励会員がいる
囲碁では、院生という プロ棋士養成制度がある
これも、年齢制限があって、一人のプロ棋士誕生のうらに、プロ棋士になれなかった多数の院生がいる
だいたい、将棋でも囲碁でも、幼少期に覚えて 1年経たないうちに
近所の大人を追い越す。そして、道場などに入って、アマ有段者、高段者と対局して力をつける
(いまどきは、上記に加えて ネット対局や AIとの対局及び研究が入るだろう)
そういう人は、NHKの小学生名人戦などで、小学生名人になったりして
だいたいは、プロにはなれるが、タイトルを取れるかどうかは、別問題
それは、プロ野球などと同じ
甲子園で、エースで投げても、プロ野球で一軍レギュラーでローテーション入りできるかは不明
これを数学に当てはめると、小学校で遠山先生の数学入門で 微積が理解できたというのは
才能ありと言えるだろうが、それでプロ数学者になれるかは別(プロ目指すやつって、そんなやつばかりw)
それから、某私大の数学科の当時の教育法も いまいちだったんじゃね?
∀や∃とか、そっちに走ったんだね。1970年代、1980年代は そういう時代だったかも
それは我々の時代でもある。「数学科なんか行っても、おれたち程度ではせいぜい高校教師」という時代(高校時代にそういう会話をした)
いまは、数学科からIT系とかいろいろあるみたいだけど
一方、IT系とかだと、純粋数学だけでなく
応用力がないとダメじゃね? おサルさんは、応用力ゼロ?w ;p)
(ああ、病気になって、いまヒキコモリか)
参考
外部リンク:coeteco.jp
コエテコ byGMO 編集部
更新日: 2025.02.05
データサイエンティストの年収はいくら?仕事内容も解説
日本のデータサイエンティストの平均年収は?
日本のデータサイエンティストの平均年収は、約700万円。月給に換算すると58万円、初任給は24万円程度が相場のようです。
ボリュームゾーンは、696〜804万円となっており、他の職種と比較してボリュームゾーンの価格帯も高くなっています。
833(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)10:35:38.47 ID:mxQOAQvq(2/13) AAS
>>820
>逆行列を求めるより固有値を求めるほうがはるかに大変だ
>ということくらいは覚えておいたほうがいい
視野が狭いな
行列の固有値の本質が分かってない!
下記を百回音読してねw ;p)
(なお、ハイゼンベルグ行列力学は、無限次元)
(参考)
hiroyukikojima.ハテナブログ.com/entry/2023/05/05/185544 (URLが通らないので検索請う)
hiroyukikojima’s blog
2023-05-05
万物は固有値である
略す
この本のメッセージを一言で言えば、
万物は固有値である
ということだと思う。
「固有値」が難攻不落の難問「リーマン予想」の攻略の武器となることをわかりやすく解説した本ということになる。
本書の根幹には、ヒルベルトとポリアの「ゼータ関数の零点は固有値解釈できるだろう」という予想がある。そのベンチマークとなる理論としての「Z-力学系のゼータ関数」から話をはじめている。
例えば、合同ゼータ関数のリーマン予想解決については、グロタンディークがエタール・コホモロジーを使って、フロベニウス作用素の行列表現の固有値で解釈した方法が概説される。またセルバーグゼータ関数では、「フーリエ展開」の係数が固有値と解釈できることから、フーリエ展開を応用した「ポワソンの和公式」がセルバーグ跡公式の源であることが詳しく説明され、そこからセルバーグゼータ関数のリーマン予想解決の急所に向かっていくのである。
ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E4%BA%88%E6%83%B3
リーマン予想
作用素理論
→詳細は「ヒルベルト・ポリア予想」を参照
ヒルベルトとポリヤはリーマン予想を導出する1つの方法は自己共役作用素を見つけることであると提案した。その存在から ζ(s) の零点の実部に関する例の主張が、実固有値に主張を適用すると従うのである。このアイデアのいくつかの根拠は、零点がある作用素の固有値に対応するリーマンゼータ関数のいくつかの類似から来る
略す
Odlyzko (1987) は、リーマンゼータ関数の零点の分布はガウスのユニタリアンサンブル(英語版)から来るランダム行列の固有値といくつかの統計学的性質を共有していることを示した。これはヒルベルト–ポリヤ予想にいくらかの根拠を与える。
Zagier (1981) はラプラス作用素の下でリーマンゼータ関数の零点に対応する固有値をもつ上半平面上の不変関数の自然な空間を構成した。そして、この空間上の適切な正定値内積の存在を示すというありそうもないイベントにおいてリーマン予想が従うことを注意した。
つづく
874: 02/13(木)18:07:07.47 ID:SX0Ci419(12/17) AAS
>>871
> 線形代数が使われる 隣接分野が 沢山あるわけで
> その 隣接分野を学ぶと MM(数学成熟度)が上がって、
> 線形代数の見え方が変わる
> 例えば、『線形代数と関数解析学—無限次元の考え方』とか
すぐ難しげなこといってマウントとろうとするのが
ニホンザル ◆yH25M02vWFhP の悪い癖である
> 正方行列だの正則行列だの
> 重箱の隅みたいなところ
初歩というか基本というかそういう常識を
考えなしに「重箱の隅」と言いきるのが
ニホンザル ◆yH25M02vWFhP の愚かな点である
>(線形代数と関数解析学—無限次元の考え方 河東 泰之)
> 線形代数の中心的な話題,すなわち
> 対角化,ジョルダン標準形,ランクの話など
> は,線形空間が有限次元でないと話がうまく進まない.
> そもそも行列を具体的に書く話が線形代数の中心であり,
> 無限サイズの行列は最初から話に入っていない.
> この意味で通常の線形代数は有限次元の理論である
> と言ってもさしつかえない.
ニホンザル ◆yH25M02vWFhP は
「ハイレベルな俺様は有限次元とかいう低レベルな話は
もうとっくの昔に卒業したのだよ」
と必死に言い訳するが、そもそも入門すらできてないので
まったくお笑い草である
> しかし,単に無限次元の線形空間やその上の線形作用素を考えたのでは,
> 手がかりが少なすぎて,意味のある一般論はほとんど何も展開できない.
> そこで新たな手法が必要になる.それが収束の概念である.
> これを導入し,位相的な考察を加えた無限次元の線形代数が関数解析学・・・
線形空間もわからんくせに、さらに収束とか新たな難物までしょい込む
これでまあ初歩レベルの自爆発言するのがオチだということには
まったく気づかないのがニホンザル ◆yH25M02vWFhP
935: 雑談 ◇yH25M02vWFhP =現代数学のオチコボレ 02/15(土)06:39:37.47 ID:36YscTpw(1/27) AAS
というHNで書くことにした(笑)
> はい、あなた、鏡がここにありますw
> はい、あなた、自分の姿が写っていますよ!
それ、おめぇ
952(1): 雑談 ◇yH25M02vWFhP =現代数学のオチコボレ 02/15(土)10:07:38.47 ID:36YscTpw(15/27) AAS
神戸のセタ君は
とにかく検索し
とにかくコピペすることで
「おれはわかってる!わかってる!!わかってる!!!」
と絶叫したいようだが、全然わかってないことは
他の人にバレバレである
自分の言葉で言い換えられない時点で明らかである
セタ君はとにかく日本語が不自由だから
自分の言葉で語るととたんに粗雑化してしまう
しかし、だからといって、それをやめてしまったら
数学なんか一生わかりようがないのである
自分の言葉で語ることこそが大事なのである
さんざん痛い目にあってそれで学習することが大事
痛い目にあうのがいやだからやりたくない
とかいうチキンな精神なら
最初から数学に興味もたないのが一番
しかしあきらめられないというなら
チキンな精神を捨てるしかない
さぁ、どっちを選ぶ? 神戸のセタ君
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.043s