[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
209: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 21:48:23.72 ID:Md2R2j9H メモ貼ります https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 多項式環 体上の一変数多項式環 K[X] 冪級数 →詳細は「形式冪級数」を参照 非零の項を無限個含むことも許すという別の方向で冪指数を一般化することにより、冪級数が定義される。ここではコーシー積における和が有限和であることを保証するために、冪指数に用いるモノイド N に対していくつかの仮定を課す必要がある。あるいは環のほうに位相を導入して、無限和を収束するものだけに限ることもできる。N として標準的な非負整数全体を選ぶならば問題は何もなく、形式冪級数環を N から環 R への写像全体として定義することができ、和は成分ごと、積はコーシー積で入れることができる。形式冪級数環は多項式環の完備化と見ることができる。 https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0 形式的冪級数 多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい 形式的冪級数全体からなる集合 A[[X]] に和と積を定義して環の構造を与えることができ、これを形式的冪級数環という。 http://yuyamatsumoto.com/ Yuya MATSUMOTO Junior Associate Professor at Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science (2023/04 –). http://yuyamatsumoto.com/ed/kanron.pdf 環論講義ノート 松本雄也(matsumoto.yuya) 2023年03月05日 6 B.2形式冪級数環と収束冪級数環. . . . . 67 B.2 形式冪級数環と収束冪級数環 本小節では環は可換とする. Aを環とする.直積集合A[[X]] := AN に対し,多項式環と同様に加法と乗法を定める B.2.2 収束冪級数環 Aに適切な構造が入っていれば,冪級数の収束や収束半径を考えることができる.ここではA=Cの場合のみ考える.Cの原点上の近傍での正則関数を考えると,そのTaylor展開が考えられ,収束半径は正の実数または無限大である.r>0に対し,Br :={ n≥0anzn |収束半径はr以上である} とする(条件を言い換えると,limsupn→∞(an)1/n ≤ 1 r である).Br はC[[z]] の(真の)部分環であり,r < r′ のときBr ⊋ Br′である.また,r≥0に対し,Br+:= s>rBsとおくと,Br+もC[[z]]の(真の)部分環であり,r>0に対しBr ⊋Br+である.これらの環の元に有限個の負冪の項を加えた級数からなる環も考えられる(形式ローラン級数の場合と同様に,1元zによる局所化でもある). http://rio2016.5ch.net/test/read.cgi/math/1738367013/209
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 793 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s