[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
190: 132人目の素数さん [] 2025/02/05(水) 10:48:57.32 ID:wxM+XkyV >>113 誰かさんはギブアップのようなので。 >問1 (2,-1,-1),(-1,2,-1),(-1,-1,2)は、線形独立? [定義]体F上の線型空間Vの元v1,・・・,vnが線型独立:∀f1,・・・,fn∈F.Σ[k=1,n]fkvk=0⇒f1=・・・=fn=0。線型独立でなければ線型従属。 [証明] (2,-1,-1)+(-1,2,-1)+(-1,-1,2)=(0,0,0)なので線型従属。 >問2 R^nの次元がnであることはどうやって証明される? [定義]線型空間Vの部分集合Bが線型独立性と全域性を満たすときBはVの基底。Vの次元=|B|。 [証明] i∈I:={1,2,・・・,n} とする。 ei∈R^n をi番目の成分=1且つ他の成分=0である元とする。{ei|i∈I} は自明に線型独立。(線型独立性) ∀r∈R^n の i番目の成分を ri と書く。このとき r=Σ[i∈I]riei であるから {ei|i∈I} は R^n を張る。(全域性) 以上から {ei|i∈I} は R^n の基底であり、R^n の次元はn。 >問3 直接法からどんな手間が省けるか、どんな手間が省けないか それぞれ具体的に示せる? 省ける手間:全域性の証明。省けない手間:線型独立性の証明。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/190
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 812 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s