[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
270: 132人目の素数さん [] 2025/02/06(木) 10:59:15.57 ID:aQgPt+EW 1と乙が唯一違うのは 1はもっともらしい(けど実は間違ってる)ことを書くが 乙はうそくさい(かつやっぱり間違ってる)ことを書く点 http://rio2016.5ch.net/test/read.cgi/math/1738367013/270
271: 132人目の素数さん [sage] 2025/02/06(木) 11:04:49.56 ID:YqLfsVRy >>269 長い証明だからここに書かないだけ http://rio2016.5ch.net/test/read.cgi/math/1738367013/271
272: 132人目の素数さん [] 2025/02/06(木) 11:31:12.44 ID:SWnYLHJh >>271 じゃ最初から書くなよw 余白ならいくらでもあるぞw http://rio2016.5ch.net/test/read.cgi/math/1738367013/272
273: 132人目の素数さん [] 2025/02/06(木) 11:34:49.50 ID:jALT4s+C >>271 そうやって自分を甘やかしてると 馬鹿から永遠に抜け出せないよ http://rio2016.5ch.net/test/read.cgi/math/1738367013/273
274: 132人目の素数さん [] 2025/02/06(木) 11:37:34.54 ID:jALT4s+C 証明のアイデアが誤解に基づく場合 どういいつくろっても 正しくなりようがない http://rio2016.5ch.net/test/read.cgi/math/1738367013/274
275: 132人目の素数さん [sage] 2025/02/06(木) 11:52:34.64 ID:YqLfsVRy >>272 余白は大事だな >>273 >>274 バカで結構ですが 昔からバカと何とかは紙一重っていうからな http://rio2016.5ch.net/test/read.cgi/math/1738367013/275
276: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 11:58:40.59 ID:kjKecCBk おサルさん>>7-10の 本音・正体丸見えだね おサルさん、数学科の1〜2年 で詰んで オチコボレさん 不遇な人生で、慰めのために、5ch天下の落書き 便所板で 必死に自分より下をさがしているんだね ルサンチマン 丸出しw (^^ ja.wikipedia.org/wiki/%E3%83%AB%E3%82%B5%E3%83%B3%E3%83%81%E3%83%9E%E3%83%B3 http://rio2016.5ch.net/test/read.cgi/math/1738367013/276
277: 132人目の素数さん [] 2025/02/06(木) 12:04:36.63 ID:SWnYLHJh >>276 >>205の回答まだですか? http://rio2016.5ch.net/test/read.cgi/math/1738367013/277
278: 132人目の素数さん [] 2025/02/06(木) 12:11:35.65 ID:SWnYLHJh 矛盾が得られると言いながらその証明は書かないおっちゃん 好きな順番に整列できると言いながら実数の整列順序は書かないおサルさん 似た者同士で草 http://rio2016.5ch.net/test/read.cgi/math/1738367013/278
279: 132人目の素数さん [] 2025/02/06(木) 13:49:47.77 ID:T3sAtJlJ 1 国立大とかいいながら所詮工学部卒 乙 理科大応用数学科卒とかいいながら数学全然分かってない 某私大数学科卒(実質情報科学屋?)の某と三つ巴の泥仕合 http://rio2016.5ch.net/test/read.cgi/math/1738367013/279
280: 132人目の素数さん [] 2025/02/06(木) 13:51:41.01 ID:T3sAtJlJ 1は 「任意の正方行列には逆行列がある 余因子行列を行列式で割ればいい」(ドヤァ) と吠えた瞬間自爆 公式暗記馬鹿って哀れだな http://rio2016.5ch.net/test/read.cgi/math/1738367013/280
281: 132人目の素数さん [sage] 2025/02/06(木) 16:03:55.89 ID:jBYaMD3j >>258の議論(mod 2バージョン)は、mod nバージョンに一般化できる。 mod 3の場合を書いてみよう。 γ(0,3):=lim_{n→+∞}(1/3+1/6+…+1/(3n)-log(3n)/3) γ(1,3):=lim_{n→+∞}(1+1/4+…+1/(3n+1)-log(3n+1)/3) γ(2,3):=lim_{n→+∞}(1/2+1/5+…+1/(3n+2)-log(3n+2)/3) とおく。ω=exp(2πi/3)のとき γ(0,3)+ωγ(1,3)+ω^2γ(2,3)=-log(1-ω) γ(0,3)+ω^2γ(1,3)+ωγ(2,3)=-log(1-ω^2) γ(0,3)+γ(1,3)+γ(2,3)=γ が成立する。これは離散フーリエ変換であることに気づくだろう。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/281
282: 132人目の素数さん [sage] 2025/02/06(木) 16:05:04.15 ID:jBYaMD3j 従って、逆離散フーリエ変換から γ(0,3)=1/3(γ-log(1-ω)-log(1-ω^2)) γ(1,3)=1/3(γ-ω^2log(1-ω)-ωlog(1-ω^2)) γ(2,3)=1/3(γ-ωlog(1-ω)-ω^2log(1-ω^2)) が得られる。ベーカーの定理の系1より https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%AB%E3%83%BC%E3%81%AE%E5%AE%9A%E7%90%86 -log(1-ω)-log(1-ω^2), -ω^2log(1-ω)-ωlog(1-ω^2), -ωlog(1-ω)-ω^2log(1-ω^2) はいずれも超越数であることが分かるので γ(0,3), γ(1,3),γ(2,3)の中で、代数的数は高々1個しかない (少なくとも2個は超越数である)ことが言える。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/282
283: 132人目の素数さん [sage] 2025/02/06(木) 16:06:38.80 ID:jBYaMD3j 以上の議論において、真に強力なのはベーカーの定理である。 その証明には精密な数論的議論を要する。 未解決問題であるγについての知見を得ることは そのさらに向こう側にある事象であると言える。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/283
284: とおりすがり [] 2025/02/06(木) 16:10:14.34 ID:DRS6TfJA >1は「任意の正方行列には逆行列がある 余因子行列を行列式で割ればいい」 なるほど コピペ張りまくりは 小学生の割り算から落ちこぼれたんだね。 N大事件のもみ消し私物化爺さんに すがりつきながら http://rio2016.5ch.net/test/read.cgi/math/1738367013/284
285: 132人目の素数さん [sage] 2025/02/06(木) 16:38:21.67 ID:jBYaMD3j >>282の訂正 事由がおかしかった。正しくは ベーカーの定理の系1より 代数的数a,bに対してalog(1-ω)+blog(1-ω^2)≠0ならば alog(1-ω)+blog(1-ω^2)は超越数であることが分かるので http://rio2016.5ch.net/test/read.cgi/math/1738367013/285
286: 132人目の素数さん [sage] 2025/02/06(木) 17:05:16.87 ID:YqLfsVRy >>281-283 >>285 オイラーの定数γの正則連分数にこだわり過ぎたのがよくないのだろうが、 それじゃ計算が煩雑になって余りやる気が起きなかったけどγの無理性の証明を試みてみようか そうすれば、オイラーの定数γは代数的無理数ではないから、 周期Pと実数体の共通部分 P∩R 上で実解析を使って考えれば γは周期に属さない超越数であることはいえる 大体、事象って何だよw http://rio2016.5ch.net/test/read.cgi/math/1738367013/286
287: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 17:06:42.35 ID:kjKecCBk >>247 (引用開始) > 有限連分数展開される実数になる なぜγが有限連分数展開されると妄想するのかわからん >>258-260 γ(0,2)とγ(1,2)のうち、少なくとも一つは無理数(超越数)である。 なぜか? γ(0,2)-γ(1,2)=log(2) が無理数(超越数)だから γ(0,2)とγ(1,2)の両方が有理数(代数的数)であることはありえない。 ちなみに、γ(0,2)+γ(1,2)=γである。 訂正>>258 >γ(0,2)-γ(1,2)=log(2) 正しくは γ(0,2)-γ(1,2)=-log(2) または γ(1,2)-γ(0,2)=log(2) >>258の記号で >γ(0,2) と書いたところは、γ(2,2)とした方がよい。 オイラー・レーマーの定数。 (引用終り) おサルさん、さー、 君のカキコって、気持ちは分かるけど なにか 数学的に 厳密な主張になっているのかい??ww ;p) 1)まず、オイラー定数γは、有理数かどうか不明だから もし、有理数ならば、『有限連分数展開される』は成り立つよ? 何を言いたいの? 2)次に、”オイラー・レーマーの定数”は、面白いが下記だな γ + x (x∈R) が 何か 無理数であることが証明されたとして 確かに、γ と x の どちらかが、無理数で 両方有理数はない しかし、x が 無理数ならば γの有理性は 否定できないよ■ (参考)(海賊版なのでURL略) ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Mathematical Constants STEVEN R. FINCH First published 2003 1.5 Euler–MascheroniConstant,γ 28 1.5.1 SeriesandProducts 30 1.5.2 Integrals 31 1.5.3 GeneralizedEulerConstants 32 P32 Briggs[105] and Lehmer[106] studied the analog of γ corresponding to the arithmetic progression a,a+b,a+2b,a+3b,...: γa,b= lim n→∞ 0<k≤n k≡amodb 1 k−1 b ln(n) . (文字化けあるが直さないので原文ご参照) For example, γ0,b=(γ−ln(b))/b, Σ a=0〜b−1 γa,b =γ,and γ1,3=1/3γ+ √3/18π+1/6 ln(3), γ1,4=1/4γ+1/8π+1/4 ln(2). [105] W. E. Briggs, The irrationality of γ or of sets of similar constants, Norske Vid. Selsk. Forh. (Trondheim) 34 (1961) 25–28; MR 25 #3011. https://www.utgjiu.ro/math/sma/ Surveys in Mathematics and its Applications is a free electronic journal. It is open to all mathematical fields (including Statistics and mathematical applications to Computer Science, Economics, Physics or Engineering). https://www.utgjiu.ro/math/sma/v16/p16_15.pdf Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), Volume 16 (2021), 259– 274 ON AGENERALIZATION OF EULER’S CONSTANT Stephen Kaczkowski P260 Anotherprominentgeneralizationofγwhichcanberelatedtoγ(a)istheEulerLehmerconstants[17]givenby γ(a,q)= lim n→∞ n ? 0<k≤n k≡amodq [1 k− ln(n) q ] , (1.4) where aandq are integers satisfying0<a≤q. http://rio2016.5ch.net/test/read.cgi/math/1738367013/287
288: 132人目の素数さん [sage] 2025/02/06(木) 17:16:59.80 ID:jBYaMD3j >>286 懲りないおっちゃん。 何で世界中の天才をもってしても解けない未解決問題が 貴方に解けると思うんだ? 数学の勉強の動機がおかしいんだわ。 数年間まったく進歩がないのはそういうこと。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/288
289: 132人目の素数さん [sage] 2025/02/06(木) 17:21:15.23 ID:YqLfsVRy >>288 こういうことは各個人の考え方の問題に過ぎない http://rio2016.5ch.net/test/read.cgi/math/1738367013/289
290: 132人目の素数さん [sage] 2025/02/06(木) 17:23:02.89 ID:jBYaMD3j 「小さな発見」でも、大きな喜びがある。 それが数学。「どんな小さなことでも分かることは嬉しい」 と永田雅宜も言ってますね。 そして、その喜びを感じてこなかったのが 「コピペバカ」である1と、「未解決問題を解く」 という「万馬券」でしかドーパミンが出なくなった おっちゃん。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/290
291: 132人目の素数さん [sage] 2025/02/06(木) 17:31:15.79 ID:YqLfsVRy >>290 私は代数ではなくどちらかというと解析の方に興味がある 概して、解析でする議論は解析数論の議論より遥かに複雑で、 解析の議論をすることは解析数論の議論をするときに役立つ http://rio2016.5ch.net/test/read.cgi/math/1738367013/291
292: 132人目の素数さん [] 2025/02/06(木) 17:44:31.62 ID:SWnYLHJh >>287 >なにか 数学的に 厳密な主張になっているのかい??ww ;p) 「好きな順番に整列できる」が数学的に厳密な主張になっていると? じゃあ実数の整列順序を提示して http://rio2016.5ch.net/test/read.cgi/math/1738367013/292
293: 132人目の素数さん [sage] 2025/02/06(木) 17:50:34.12 ID:jBYaMD3j >>291 要するに、解析数論の本を読んでも理解できないから 「一般論」である解析学の本から始めてるだけでしょ。 解析数論は、「なんでこんなこと考えるんだ?」 という動機が分かりにくいからね。 sieve method(篩法)とか、circle method(円周法) とかね。多分、分かったらめちゃくちゃ面白いはず。 分からないというのは、悲しいねぇw http://rio2016.5ch.net/test/read.cgi/math/1738367013/293
294: 132人目の素数さん [sage] 2025/02/06(木) 17:59:26.45 ID:YqLfsVRy >>293 同じ解析数論っていっても、素数と合成数の振る舞いを表す ランダムウォークの奇跡の確率論による解析の結果とか他にも色々あるよ http://rio2016.5ch.net/test/read.cgi/math/1738367013/294
295: 132人目の素数さん [] 2025/02/06(木) 18:06:17.75 ID:aNn7qWpe >>291 落ちこぼれの思い込みは大体嘘 http://rio2016.5ch.net/test/read.cgi/math/1738367013/295
296: 132人目の素数さん [] 2025/02/06(木) 18:06:18.61 ID:aNn7qWpe >>291 落ちこぼれの思い込みは大体嘘 http://rio2016.5ch.net/test/read.cgi/math/1738367013/296
297: 132人目の素数さん [] 2025/02/06(木) 18:07:07.52 ID:aNn7qWpe >>294 落ちこぼれが天才ぶるな 馬鹿 http://rio2016.5ch.net/test/read.cgi/math/1738367013/297
298: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 18:10:24.37 ID:kjKecCBk >>277 >>205の回答まだですか? うん? >>205 (引用開始) 好きな順番で整列できるなら、実数全体の集合上の整列順序をあなたの好きなように作って示して下さい。 できるできる詐欺でないなら。 (引用終り) これか? 1)いま、簡単に実数Rのプラス側のみを考える 半開区間を、[0,1), [1,2), [2,3), ・・、[n,n+1),[n+1,n+2),・・・ を設ける。[n,n+1)内を、整列可能定理で整列させる そして 区間 [0,1), [1,2), [2,3), ・・、[n,n+1),[n+1,n+2),・・・ を無限シャッフルし、並び替える 例えば [3,4), [2,3), [5,6),・・・など もし、各区間の実数並びが 他の区間と同じ(類似?)であっても その順列組み合わせは lim n→∞ n! 通りになる 2)いま、0<ε<1 なる実数を取る。有理数とは限らないとする 上記同様に [0,ε), [ε,2ε), [2ε,3ε), ・・、[nε,(n+1(ε),[(n+1)ε,(n+2)ε),・・・ のように、区間分割できる 1)と同様にシャッフルする。εによる区間分割の集合は可算濃度だが、ε自身は連続濃度 3)また、各区間の実数の整列は、整列可能定理で整列させるが その先頭部分は、各人が好きにしてよい 例えば、[2,3)で 先頭をe (対数の底)にするとか 例えば、[3,4)で 先頭をπ(円周率)にするとか <まとめ> ・公理なので、その公理や 他の数学の命題に抵触しない限り 人の意思が入っていいのです! (そうでなければ、人が自由に数学を展開できないでしょ? そんなの常識だろ?) ・ただ、今の人類の数学で、人の意思と知恵が、実数を 任意に整列できるレベルに達していないならば その部分については、整列可能定理の整列の存在だけで我慢するしかない!■ そういうことでしょ? (^^ http://rio2016.5ch.net/test/read.cgi/math/1738367013/298
299: 132人目の素数さん [sage] 2025/02/06(木) 18:10:56.50 ID:YqLfsVRy >>295>>296 >>294は素数の分布と合成数の分布の関係を表すランダムウォークの確率論的結果 http://rio2016.5ch.net/test/read.cgi/math/1738367013/299
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 703 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s