スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
61(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 03/19(水)11:19 ID:jGV7zUN5(1) AAS
転載:純粋・応用数学・数学隣接分野(含むガロア理論)19
2chスレ:math
2025/03/19(水) 07:41:27.67ID:+DlAmH51
>> 611
>3)計算した結果を見るのも大事だ。しかし、計算しないでも「それ、なんかおかしくない?」と思わなきゃいけない、良い工学屋とはいえないのです
> その典型例が、「箱入り無数目」だな (^^
補足しておく
1)確率論の分野に 乱数理論、確率過程論、情報理論がある
2)いま、下記「真の」乱数を使って、生成した乱数を 箱に入れた
「真の」乱数だから、他の箱を開けても、閉じられている箱の数を予測することはできない(乱数の定義から従う)
予測できるならば、「真の」乱数でなくなり、矛盾
3)確率過程論などでもそうだが、乱数生成のパラメータ t として、連続濃度を考えることができる(パラメータ t は、普通は時間と考えることが多い)
だから、連続 パラメータ t から、可算個の 乱数値をサンプリングすることは 可能だ
情報理論の常識からしても、閉じられた箱の中の数が 連続濃度の可能性があるのに、可算個のサンプリング値から 確率99/100的中など、情報エントロピーを考えると 全く整合しない
あたかも、アマ数学者が「5次方程式のべき根の解の公式を 作った」というが如し
プロ数学者:「5次方程式は、べき根では 解けないよ。近似解なら 可能かもしれないが」というが如し
(ガロア理論の常識が無い人には、これ分らないだろうが)
「箱入り無数目」も同様
乱数理論、確率過程論、情報理論 の常識が無い人には、分らないだろうが (^^
(参考)
外部リンク:ja.wikipedia.org
乱数生成
「真の」乱数と「疑似」乱数の比較
乱数生成、すなわち乱数列の生成には主に2つの方法がある。1つ目の方法は、ランダムであることが予想される物理現象を測定し、測定過程で起こりうる偏りを補正する方法である。
62: 03/19(水)12:34 ID:2xv8QBhB(1) AAS
>>61
>それ、なんかおかしくない?
うん、おかしいよ、閉じられている箱の数を予測すると誤読している君が
63: 03/19(水)13:22 ID:Mn1byCuH(1) AAS
>>61
無限列が「真の」乱数列か否かによらず、自らが属する同値類の代表列とは
ほとんどすべての項で(つまりたかだか有限個の項以外で)一致する
したがって、無限個の項からランダムに1つ選べるのなら、
ほぼ確実に同値類の代表列の対応する項と一致するから当たる
しかしながら項が可算個の場合、すべての項が等確率になるような測度が設定できない
したがって選べる項を有限個に限定した上で、その中で同値類の代表列との不一致項が
たかだか1つになるようにしたい
「箱入り無数目」の箱(項)の選択方法とはまさにそのようなものである
「箱入り無数目」では乱数理論、確率過程論、情報理論は全く不要である
ただ選択公理のみ理解すればいい
しかし大学1年の微分積分と線型代数が理解できなかった人は
選択公理も理解できないらしく、とんちんかんな言いがかりばかりつけてくる
哀れなものである
66(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/30(金)11:12 ID:R7MP2UcH(1) AAS
>>65
>あっという間の10年
ID:LqfjoOWR は、御大か
巡回ありがとうございます。
そうですね
1)10年 も 経てば、正しい理論ならば、それを認めるプロ数学者が出て、論文の一つも書きそうなところ
箱入り無数目理論については、皆無。よって、これを正しいと認めるプロ数学者も皆無(但し、非確率論専門家のプロ数学者で 一人例外が)
まあ、確率論専門家のプロ数学者には、箱入り無数目理論を認める人皆無
(これを偽と思う人は、反例を作ってください。簡単ですよ、大学の確率論専門家に、”ときえだ ただしい” と その人のホームページにアップを書いてもらってください。”ときえだ ただしい”なら、簡単です)
(余談ですが、望月IUT理論は ちゃんと ”ただしい”と認めるプロ数学者が増加中です。来年のICM2026で認められることを期待しています)
2)大学レベルの確率論は、殆どが 確率測度に基づいて 論じられる
箱入り無数目理論には、確率測度の裏付けなく ここが ゴマカシですね
だから、「真の」乱数理論を認めると、箱入り無数目理論の確率 p=99/100 とは 真っ向矛盾するのです>>61
乱数理論は、歴史のある確率論の一分野で、確率論専門家ならだれしも認めるところですが
”箱入り無数目理論”は、ぺっぺ ですね (^^;
67(1): 05/30(金)11:43 ID:VcM5m259(2/3) AAS
>>66
>1)10年 も 経てば、正しい理論ならば、それを認めるプロ数学者が出て、論文の一つも書きそうなところ
なぜ一般教養レベルの問題を論文に?
> 箱入り無数目理論については、皆無。よって、これを正しいと認めるプロ数学者も皆無(但し、非確率論専門家のプロ数学者で 一人例外が)
> まあ、確率論専門家のプロ数学者には、箱入り無数目理論を認める人皆無
> (これを偽と思う人は、反例を作ってください。簡単ですよ、大学の確率論専門家に、”ときえだ ただしい” と その人のホームページにアップを書いてもらってください。”ときえだ ただしい”なら、簡単です)
箱入り無数目成立を公言した大学教員
Stanford大学教授 時枝正
Kusiel-Vorreuter大学教授 Sergiu Hart
Baylor大学教授 Alexander Pruss
箱入り無数目不成立を公言した大学教員
無し
>大学レベルの確率論は、殆どが 確率測度に基づいて 論じられる
確率論の問題じゃないことがいまだに分かってないんだね。
オチコボレは10年経ってもオチコボレだね。
>箱入り無数目理論には、確率測度の裏付けなく ここが ゴマカシですね
箱入り無数目の確率は有限集合{1,2,・・・,100}上の一様分布だからまったく見当違い。
>だから、「真の」乱数理論を認めると、箱入り無数目理論の確率 p=99/100 とは 真っ向矛盾するのです>>61
その誤解は「箱入り無数目の確率はある箱の中身を言い当てる確率」との誤読から来ている。
正しくは、100個の箱から99個の当たり箱を当てる確率。
記事を読めないおサルさんは読み書きからやり直した方が良い。
>”箱入り無数目理論”は、ぺっぺ ですね (^^;
読み書きもできないオチコボレこそ数学板からぺっぺですね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.021s