スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
273(2): 07/21(月)15:47 ID:60RWf/A5(1/3) AAS
"可算無限個のサイコロを投げます"より 転載しておく
2chスレ:math
(引用開始)
”>>58
>箱入り無数目は 全事象Ωが発散している
Ω={1,2} のどこが発散してるのか言ってみ?”
だったろ?
この
あとでやるよ
(引用終り)
1)まず、簡単に箱5つで考えよう
それを 数列 s1,s2,s3 ,s4,s5 とする
si | i=1〜5 は、コイントスで {0,1}が入る ({1,2}→{0,1}とした)
2)箱入り無数目同様に、しっぽ同値を考える (箱入り無数目は 右ご参照 2chスレ:math)
数列 s'1,s'2,s'3 ,s'4,s'5 で、しっぽ同値だと s'5=s5 だ
だから、一つの同値類の場合の数は 2^4 で、全体Ωは 2^5
3)いま、列長さL(L>5)を考える
上記同様
s1,s2,s3 ,s4,s5・・,sL-1,sL
s'1,s'2,s'3 ,s'4,s'5・・,s'L-1,s'L
で、しっぽ同値だと s'L=sL だ
だから、一つの同値類の場合の数は 2^(L-1) で、全体Ωは 2^L
4)箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで
全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N
(なお、2^Nは非可算無限だね(下記))
よって、『箱入り無数目は 全事象Ωが発散している』
(参考)
外部リンク:ja.wikipedia.org
非可算集合
例
非可算集合の例として最も知られているものは実数全体の集合 R
R の濃度をしばしば連続体濃度と呼び c や
2^ℵ0 または ℶ1 (beth-one) で表す
276: 07/21(月)23:26 ID:mqIGDCdy(1/5) AAS
>>273
>4)箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで
> 全体Ωは 2^N
箱入り無数目は2列に並べ替える場合Ω={1,2}
なぜなら箱入り無数目の確率事象は列選択だから。
これは著者による定義だから君が勝手に変更したらダメ。
何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ
287: 07/22(火)07:53 ID:dtV915iA(1) AAS
>>273
2chスレ:math
>箱入り無数目は 全事象Ωが発散している
|Ω={1,2} のどこが発散してるのか言ってみ?
>箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで
>全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N
>(なお、2^Nは非可算無限だね)
>よって、『箱入り無数目は 全事象Ωが発散している』
はい 間違い
はい ●違い
|Ω={1,2}は2列のいずれかを選択することが試行
2は箱の中身の種類ではなく、列の数
残念でした
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.024s