スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 レス栞

189
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/12(木)23:02 ID:EWvjXceg(1) AAS
>>180
(引用開始)
wikipedia「確率変数」より引用
確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。各事象は確率をもち、その比重に応じて確率変数はランダム[1]:391に値をとる。
(引用終り)

ふっふ、ほっほ
それな ja.wikipedia だね。必ず英語版を見ておくように!
ja.wikipediaの後半”確率変数とは、Ω 上で定義された実数値関数で F可測であるものといえる”が、英語版に近いぞ

英語版では”Definition
A random variable X is a measurable function
X:Ω→E
from a sample space Ω as a set of possible outcomes to a measurable space
E. ”とあるよ
これを、百回音読してねw ;p)

(参考)
外部リンク:ja.wikipedia.org
確率変数
確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。各事象は確率をもち、その比重に応じて確率変数はランダム[1]:391に値をとる。
確率空間 (Ω,F,P) において、標本空間 Ω の大きさが連続体濃度の場合、確率変数とは、Ω 上で定義された実数値関数で F可測であるものといえる

外部リンク:en.wikipedia.org
Random variable
Definition
A random variable X is a measurable function
X:Ω→E
from a sample space Ω as a set of possible outcomes to a measurable space
E.
190
(1): 06/12(木)23:15 ID:ncWNUphu(4/4) AAS
>>189
英語版がどうかしたか?
>>182へ反論できないならスレ削除依頼だしとけよオチコボレ
191: 06/13(金)05:55 ID:v4dy1g/b(1/2) AAS
>>189
Ω=(R^N)^100とした場合
d_i:Ω→R (列100組の第 i 列からその決定番号への関数)や
D_i:Ω→R (列100組の第 i 列以外からそれらの決定番号の最大値への関数)が
いずれも可測にならないから、確率が求まらない、というのはその通り

し・か・し、箱入り無数目の標本空間はΩでない
出題は定数であるし、したがって決定番号も定数である
Ωは有限集合{s_1,…,s_100}であるし、
回答者の選択Chが以下の確率変数
Ch:Ω→R c(s_i)=i
単にP(Ch=i)となる確率を求めればよく
それは i が1〜100の自然数であるとき1/100

たったそれだけ
これわかるまで100回でも1000回でも10000回でも繰り返し読んでな 
ただし音読でなく黙読で うるさいからさ
199
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/13(金)17:48 ID:MdHzpiss(1) AAS
>>189
(引用開始)
外部リンク:ja.wikipedia.org
確率変数
確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。
(引用終り)

<補足>
1)ここで、”確率変数”という用語が、”統計学”に限らないことは
 >>164 "1.1 確率変数とは" by 独学・ひまわり数学教室 高校数学 数学B 第3章 確率分布と統計的な推測 外部リンク:www.himawari-math.com
 にある通り
 そして、大学の確率論では 確率変数は、関数としてとらえるのです( >>193-195 英wikipedia Random variable ご参照)
2)ここが分からないと
 大学の確率論では、入り口の ”確率変数”から、ズッコケることになる
 まあ、大学学部1年の一日目から 詰んだ オチコボレさんには ここは難しいだろうが
 皆さんには、他山の石として ちゃんと理解してほしいw ;p)
3)なお、さらに補足すれば 統計学の確率論において
 例えば >>179のように 「2枚の硬貨」を使って 箱に
 {(0、0),(1、0),(0、1),(1、1)}
   ↓
 { X=0 , X=1 , X=1 , X=2 }
 なる数を入れたとする。その試行を100回繰り返したとする
 そうすれば、約25回が、X=0で
 約50回が、X=1
 約25回が、X=2
 統計処理の結果、X=0と2が 約25/100=1/4の確率
 X=1が 約50/100=1/2の確率
 となるのです

これで、お分かりのように X=0、1、2 は すべて 過去の試行の結果だから 統計学でも 変化はしない■
(「変数だから 箱の中のコインが くるくる変わっている?」などは、単に勘違い男の妄想にすぎないのです!w ;p)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.030s