スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
164(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/09(月)16:04 ID:n21sjwUN(2/3) AAS
>>144
>・「箱の中身」は確率変数ではなく、あらかじめ固定された対象である。
>>160
>>4)箱入り無数目のトリックは、”無数目”の部分にあって、多くの数学徒が知らない非正則分布(>>8)を、密かに使ってしまっていることにあるのです■
分布も何も100列の決定番号は定数。
二人のあたま、腐っているなw ;p)
1)確率変数とは? >>141の通りで
”確率変数は、確率空間上で定義される関数です。
つまり、確率変数 ( X ) は標本空間 ( Ω ) から実数(または他の数学的対象)への写像:[ X: Ω → R ]”
2)それを、この二人は くさった頭で 小学生なみのバカ思考
「確率変数ではない」→定数である と 宣う
確率変数とは? が、全く分かってないバカあたま
(参考)
外部リンク:www.himawari-math.com
独学・ひまわり数学教室
高校数学[総目次]
数学B 第3章 確率分布と統計的な推測
1.1 確率変数とは
確率変数とは何か.通常の変数との違いはどこか.
この X のように,試行によって値が決まる変数を確率変数(random variable)という.確率変数は
X のように通常大文字を用いて表す.
確率変数と通常の変数との違いは,確率変数には各値に対して背後に確率が1つ対応しているというところにある.
確率変数とは 試行の結果によって値が決まる変数を確率変数という.確率変数には各値に対して確率が与えられている.
X=k のときの確率を
P(X=k) と表す.上の例では,
P(X=0)=1/4, P(X=1)=1/2, P(X=2)=1/4
となる.確率であるからこれらの合計は必ず1になる
(引用終り)
補足
分かるかな? バカ頭には分からんかな? ;p)
この例では
X=0、X=1、X=2 と3つの値を取るよ
Xが確率変数で、例えば X=1と決まれば P(X=1)=1/2 と決まるよ
変数←→定数(あるいは 変数 vs 定数 )の 中学生レベルの数学連想ゲームにハマると 訳分からんぞww ;p)
なお、下記の”たにぐち授業ちゃんねる 確率変数” を紹介するので、最低百回繰り返しみてくれたまえw
動画リンク[YouTube]
[数B] [統計#1]確率変数を基礎から徹底解説!初心者でもすぐに理解できる統計授業![統計的な推測]
たにぐち授業ちゃんねる 2022/11/11
今回は確率変数というものについて学習します。確率分布と統計的な推測を学習する上で必要となる大切な概念ですので、ここできちんとおさえておきましょう!
165: 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/09(月)16:12 ID:n21sjwUN(3/3) AAS
>>164 タイポ訂正
分布も何も100列の決定番号は定数。
↓
>分布も何も100列の決定番号は定数。
167(3): 06/09(月)16:57 ID:DSuothyw(6/6) AAS
>>164
>確率変数 ( X ) は標本空間 ( Ω ) から実数(または他の数学的対象)への写像:[ X: Ω → R ]”
箱入り無数目の確率変数は、「さて, 1〜100 のいずれかをランダムに選ぶ.」より X:{1,2,...,100}→R, X(x)=1/100 であると分かる。
>二人のあたま、腐っているなw ;p)
腐ってるのは、たったこの程度のことすら分からない君のあたま。
だから落ちこぼれる。
168(1): 06/09(月)17:59 ID:8xey+KrC(2/2) AAS
>>164
現代数学の系譜 雑談 ◆yH25M02vWFhP の誤解
1.標本空間Ωが、(R^N)^100だと思い込んでいる
正しい標本空間Ωは、{1,…,100}
2.しかもP(d(s100)<=max(d(s1),…,d(s99)))とすべきところを
勝手に変数max(d(s1),…,d(s99))を定数Dに置き換え
P(d(s100)<=D)とすり替えて確率0だと言い張る
1の誤解はあるあるなので仕方ないが
2の誤解は明らかに文章読めない素人レベル
分布d(s)と、分布max(d(s1),…,d(s99))を、比較せねばならない
分布d(s)と、定数Dを比較しても、意味がない
(完)
169(1): 06/10(火)09:27 ID:mJDoGClM(1/2) AAS
>>164
反論できないならスレ削除依頼出せよオチコボレ
170(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/10(火)18:07 ID:gB3jvmJk(1) AAS
>>166-169
言いたいことは それだけ?
ならば、逝ってよし
このアホバカ二人が 理解できるかどうか分からないが
まあ この5chを見ている観客には、分かるように説明してみよう
1)この アホバカ二人は、用語”確率変数”を見て、中学の”変数”を連想ゲームしている
そこから、”確率変数”Xが、くるくる変わるなどと、ああ勘違いw
そこから、中学生の連想ゲーム”箱入り無数目は 定数だぁ!”と 叫ぶww
2)どっこい、用語”確率変数”とは そういう定義ではないのです!
>>154の "1.1 確率変数とは"(独学・ひまわり数学教室)にあるように
「確率変数とは 試行の結果によって値が決まる変数を確率変数という」なのです
つまり、一つの試行で 一つ値が決まる ということ
つまり、一つの試行内では、一つ値が決まって その値は変化はしない
だが、別の試行では、別の値が決まる(他の試行と同じ値であることを、妨げない。例えば コインで 表-裏と 裏-表とは 同じで1(後述))
3)動画の たにぐち授業ちゃんねる も、独学・ひまわり数学教室も 同様だが
「2枚の硬貨」による 確率変数を扱っているので これで説明しよう
>>164 より再録 X=k のときの確率を P(X=k) と表す.
上の例では,P(X=0)=1/4, P(X=1)=1/2, P(X=2)=1/4 となる.確率であるからこれらの合計は必ず1になる
4)この ”P(X=0)=1/4, P(X=1)=1/2, P(X=2)=1/4 ”が、即 確率分布になります
まとめると
・用語”確率変数”とは、試行の結果によって値が決まる変数(あるいは関数)
(関数 X:試行 → 値(ある実数)、しばしば、上記のように 関数 Xを 記号の簡略化(濫用)で、関数値と同一視する(例:X=1 などの表記))
・”確率変数”は、一つの試行においては 変化しない。しかし、別の試行では 別の値になる(但し、他の試行と同じ値であることを、妨げない(コインで 表-裏と 裏-表とは 同じで1))
・確率変数Xは、正規の確率空間において、一つの確率pを定める
X vs p (のグラフ)を、確率分布と呼ぶ
まずは、ここまで
179(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/11(水)18:10 ID:181R6eWz(1) AAS
>>171-174 & >>176-178
言いたいことは それだけ?
ならば、逝ってよし
>>170 つづき(確率論の基本事項の説明)
1)用語”確率変数”を、いましばし 追加説明する
上記 「2枚の硬貨」に即して説明する
事象は、>>164の通りで
{(裏、裏),(表、裏),(裏、表),(表、表)}の4通り。これに 表を1、 裏を0として
↓
{(0、0),(1、0),(0、1),(1、1)} これで 和を作ると 確率変数(実数との対応)が出来て
↓
{ X=0 , X=1 , X=1 , X=2 } となる(確率変数は関数で 本来X(1、1)=2と書くべき だが、面倒なので みな X=2と略記している)
2)ここから、全事象Ω={(裏、裏),(表、裏),(裏、表),(表、表)}
根源事象 (裏、裏),(表、裏),(裏、表),(表、表) の4つ
確率は、P(Ω)=1,
P(X=0)=1/4, P(X=1)=1/2, P(X=0)=1/4 となる
3)この P(X=0)=1/4, P(X=1)=1/2, P(X=0)=1/4 が、確率分布で
横軸 X=0、1、2 とし 縦軸に 1/4, 1/2, 1/4 をプロットすれば 確率分布の図ができる
4)試行との関係では、1つの試行で Ω={(裏、裏),(表、裏),(裏、表),(表、表)}のどれかが起きる
これを抽象的に表現したものが、確率変数と考えるとことができる
X=0は、(裏、裏)
X=1は、(表、裏),(裏、表)の2通り
X=2は、(表、表)
5)これを、箱入り無数目に当てはめてみよう
いま、1つの試行で
「2枚の硬貨」を使って、箱に X=0,1,2の数字を入れていくとする
例えば、(1,2,1,0,1,2,・・・)となったとしょう
各項の数は、箱の中で 出題者にしか分からない(回答者には まだ見せない)
>>8の重川一郎 2013年度前期 確率論基礎 外部リンク[pdf]:www.math.kyoto-u.ac.jp
のように 確率変数に付番をつけると
X1=1,X2=2,X3=1,X4=0,X5=1,X6=2,・・・
となる
X1=1の X1は付番された確率変数だ。しかし、変数だからコロコロ変化するわけではない! 一つの試行では変化しない!!
別の試行においては、X1=2に変化したり X1=0になったりすることはありうる
6)そして、iid(独立同分布)を仮定すると、Xi i∈N たちは、すべて上記3)の確率分布 に従っている
よって
確率変数について、「変数だから 一つの試行中に コロコロ変化する」と妄想する 落ちコボレさんが二人いるw
しかし、それは妄想ですww ;p)
とりあえず、今回はここまで
199(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/13(金)17:48 ID:MdHzpiss(1) AAS
>>189
(引用開始)
外部リンク:ja.wikipedia.org
確率変数
確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。
(引用終り)
<補足>
1)ここで、”確率変数”という用語が、”統計学”に限らないことは
>>164 "1.1 確率変数とは" by 独学・ひまわり数学教室 高校数学 数学B 第3章 確率分布と統計的な推測 外部リンク:www.himawari-math.com
にある通り
そして、大学の確率論では 確率変数は、関数としてとらえるのです( >>193-195 英wikipedia Random variable ご参照)
2)ここが分からないと
大学の確率論では、入り口の ”確率変数”から、ズッコケることになる
まあ、大学学部1年の一日目から 詰んだ オチコボレさんには ここは難しいだろうが
皆さんには、他山の石として ちゃんと理解してほしいw ;p)
3)なお、さらに補足すれば 統計学の確率論において
例えば >>179のように 「2枚の硬貨」を使って 箱に
{(0、0),(1、0),(0、1),(1、1)}
↓
{ X=0 , X=1 , X=1 , X=2 }
なる数を入れたとする。その試行を100回繰り返したとする
そうすれば、約25回が、X=0で
約50回が、X=1
約25回が、X=2
統計処理の結果、X=0と2が 約25/100=1/4の確率
X=1が 約50/100=1/2の確率
となるのです
これで、お分かりのように X=0、1、2 は すべて 過去の試行の結果だから 統計学でも 変化はしない■
(「変数だから 箱の中のコインが くるくる変わっている?」などは、単に勘違い男の妄想にすぎないのです!w ;p)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.020s