スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
13(1): 01/15(水)11:33 ID:ZCTGHyhi(13/19) AAS
つづき
2chスレ:math スレ26
より
778現代数学の系譜 雑談 ◆yH25M02vWFhP
2024/11/10 ID:zvgSRz4H
>>777
> 数列なんか一つも見る前に全同値類の代表は選択されている
> だから100列の決定番号は箱を一つも開けるまえから決まっている
ふっふ、ほっほ
(>>719より再録)
3)結局、手順が異なると 異なる確率計算結果になるのは、決定番号を使う確率計算というものは
well-defined でないってことだ(下記 『最終的な結論が中途の表式に依存している』)
4)そして、その原因は テンプレの>>4-5 に引用してあるが
”infinite fair lottery”状態
つまり、決定番号が自然数N全体を渡り Ω=N で P(Ω)=1とできない(Ωが無限大に発散)
だってことだね
(参考)
外部リンク:ja.wikipedia.org
well-defined[注釈 1](ウェル・ディファインド)は、「定義によって一意の解釈または値が割り当てられる」ことを言う[2]。
経由する中途の表式に依存しない
往々にして、(数学上の)定義はいくつもの表式を経由する[注釈 3]。このとき、最終的な結論が中途の表式に依存している場合[注釈 4]、well-defined であるとは言えない。
つまり定めた対象が一意に存在しているとき、well-defined であるという。
つづく
7(1): 01/15(水)11:22 ID:ZCTGHyhi(7/19) AAS
つづき
(完全勝利宣言!w)(^^
2chスレ:math スレ4 (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
1)いま、時枝記事のように
問題の列を100列に並べる
1〜100列 のいずれか、k列を選ぶ(1<=k<=100)
k以外の列を開け、99列の決定番号の最大値をdmax99 とする
k列は未開封なので、確率変数のままだ
なので、k列の決定番号をXdkと書く
2)もし、Xdk<=dmax99 となれば、dmax99+1以降の箱を開けて
k列の属する同値類を知り、代表列を知り、dmax99番目の箱の数を参照して
その値を問題のk列の箱の数とすれば、勝てる
(∵決定番号の定義より、dmax99番目の箱は、問題のk列とその代表とで一致しているから)
3)しかし、決定番号は、
自然数N同様に非正則分布>>13だから、これは言えない
つまり、確率はP(Xdk<=dmax99)=0 とすべきだ
(非正則分布なので、上限なく発散しているので、dmax99<=Xdk となる場合が殆ど)
4)もし、決定番号が、[0,M](Mは有限の正整数)の一様分布ならば
dmax99が分かれば、例えば、
0<=dmax99<=M/2 ならば、勝つ確率は1/2以下
M/2<=dmax99<=M ならば、勝つ確率は1/2以上
と推察できて
それを繰り返せば、大数の法則で、P(Xdk<=dmax99)=99/100が言えるだろう
(注:dmax99は、100列中の99列の最大値なので、P(Xdk<=dmax99)=99/100が正しいだろう)
しかし、非正則分布では、このような大数の法則は適用できない
5)人は無意識に、決定番号も正則分布のように錯覚して、トリックに嵌まるのです
しかし、非正則分布では、大数の法則も使えない
結局、時枝記事の99/100は、だましのトリックってことです
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.036s