スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
前次1-
抽出解除 レス栞

8
(17): 01/15(水)11:22:49.99 ID:ZCTGHyhi(8/19) AAS
つづき

さて、上記を補足します

1)いま、加算無限の箱が、iid 独立同分布 とします
 箱を、加算無限個の確立変数の族 X1,X2,・・Xi・・ として扱うのが
 現代の確率論の常套手段です
2)いま、サイコロ1〜6の数字を入れるならば、任意Xiの的中確率は1/6
 コイントス 0,1の数字を入れるならば、的中確率は1/2
 もし、区間[0,1]の実数を入れるならば、的中確率は0
 もちろん、時枝記事の通り任意実数r∈Rならば やはり、的中確率は0
 です
3)ところが、時枝記事では、確立変数の族 X1,X2,・・Xi・・ を100列に並べ替え
 数列のしっぽ同値類の類別と、類別の代表を使って、決定番号を決めて
 決定番号の大小比較から、ある箱Xjについて、的中確率99/100に改善できる
 と主張します
4)「そんなバカな!」というのが、上記の主張です

マジ基地は無視してさらに補足します

1)時枝記事の決定番号をdとすると、dは1から無限大(∞)までを渡ります
 このような場合、しばしば非正則分布(正則でない)を成します(下記)
2)非正則分布の場合、全体が無限大に発散して、平均値も無限大になり
 分散や標準偏差σなども、無限大に発散します
3)具体例として、テスト回数無限回の合計点で成績評価をする場合を考えます
 テスト回数が、1回、2回、・・n回、・・
 もし、テスト回数が有限なら 例えば100回で1回の満点100点として、総計10,000(1万)点ですが
 テスト回数が無限回ならば、毎回1点の人の総計も無限大(∞)に発散し
 毎回100点満点の人の総計も無限大に発散しまず
 試験の点の合計では、毎回1点の人も毎回100点も区別ができなくなります
 この合計については、平均は無限大、分散や標準偏差σなども無限大に発散します
4)ところで、時枝氏の数学セミナー201511月号の記事では
 このような非正則分布を成す決定番号を、あたかも平均値や分散・標準偏差σが有限である
 正則分布のように扱い、確率 99/100とします

これは、全くのデタラメでゴマカシです

(参考)
外部リンク:ai-trend.jp
AVILEN Inc. 2020
2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
ライター:古澤嘉啓
目次
1 非正則な分布とは?一様分布との比較
2 非正則分布は確率分布ではない!?
3 非正則事前分布は完全なる無情報事前分布
4 まとめ

外部リンク[html]:www.math.kyoto-u.ac.jp
重川一郎
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎
P7
確率空間例サイコロ投げの場合
確率空間として次のものを準備すればよい.
Ω={1,2,・・・,6}^N∋ω={ω1,ω2,・・・}
ωnは1,2,・・・,6のいずれかで,n回目に出た目を表す.
確率はη1,η2,・・・ηnを与えて
P(ω1=η1,ω2=η2,・・・ωn=ηn)=(1/6)^n
と定めればよい.これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorovの拡張定理と呼ばれる定理により証明できる.

つづく
73
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/01(日)10:41:36.99 ID:SMdueHXd(1) AAS
>>67
>なぜ一般教養レベルの問題を論文に?

数学論文でなくとも、”確率論に関するパラドックス”は、よく論文になっているよ(例えば下記)
外部リンク[pdf]:yamanashi.repo.nii.ac.jp
山梨大学学術リポジトリ
確率論に関するパラドックスの考察
中村宗敬(Munetaka NAKAMURA) 著 · 2011 —
例えば,よく知られたパラドックスとして誕生日問題, すなわち, 集団が23人を超えると その中に同じ誕生日の人がいる確率は1/2を超えるが, 1年の日数 365に比して, 23人と ... 8 ページ

> Kusiel-Vorreuter大学教授 Sergiu Hart

Sergiu Hart氏もこれ(確率論に関するパラドックス)(>>5 より Some nice puzzles 外部リンク[pdf]:www.ma.huji.ac.il

さて >>8 より
外部リンク[html]:www.math.kyoto-u.ac.jp
重川一郎
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎

これ 京大学部の確率論テキストだが、これに限らず 学部レベルの確率論テキストは 世にいろいろあるよ
学部レベルの確率論を習得した人は
”箱入り無数目理論”は、ぺっぺ です (^^;

<理由>
1)まず
 閉じた箱の中の任意実数 x∈R の1点的中は、測度論として 確率0以外は与えられない(下記 ルベーグ測度より)
 1点的中の確率99/100など ぺっぺ です(測度論に矛盾している)
2)さらに、上記 重川 第4章ランダム・ウォーク で 連続時間を取る
 ある 時刻t で 区間[0,t]を考える。 これは連続変数だから ここから可算個のサンプルが採れる
 時刻tから 遡って t0,t1,t2・・・ と 可算無限個のサンプルにおいて
 重川 第4章の通り、ベルヌーイ列で いま 0,1の二値とする
 これを、箱入り無数目のように 可算無限の箱に入れる
 重川のように iid を仮定し、確率分布を与えれば 正当な確率理論による的中確率が定まる(iid なので どの一つの箱も例外なし!)
 一方、箱入り無数目は ある箱が例外で 確率99/100だと 主張する
 重川 確率論基礎と、箱入り無数目 の確率99/100 は、矛盾!■

(参考)
外部リンク:manabitimes.jp
高校数学の美しい物語
ルベーグ測度 2023/05/11
・1点集合 {p} p∈R μ*({p})=0
337: 10/02(木)09:41:24.99 ID:UdWUHqxF(1/2) AAS
>>324
>ロジックに傷がない理論は何通りもありうる

箱入り無数目の理論を提示する権利は
著者であるトキエダタダシ一人にあり
一読者にはない

それがわからん尊大なOT

何様?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.026s