スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
43
(1): 01/16(木)07:47:07.42 ID:q09NtzhZ(4/5) AAS
>>41
>「勝ち負けがあるわけだからそういう見方もできるのでは?」
 耄碌爺は実際には「そうでない見方はない」と言い張ってる
 しかもそれを指摘するとそんなことはないと嘘をつき
 またそんな見方はないと言い張る これこそ●違い
118
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:15:15.42 ID:tJ92Py3q(3/5) AAS
>>112-113 追加自己レス
(引用開始)
4)これを、決定番号に当てはめると
 いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った
 相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った
 箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる
 Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
 代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える
(引用終り)

ここが一番のキモです
1)つまり、箱入り無数目を成り立たせている手法とは
 i)可算無限の実数列のシッポ同値類を作る(出題の実数列)
 ii)シッポ同値類の代表を一つ選ぶ
 iii)出題の実数列と 代表列の比較により 決定番号d(ある番号dから先 この二つの実数列が一致している番号)を得る
 iv)いま、何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た
 v)このとき、d'より大きな番号の箱を開けて、出題の実数列の属する同値類をつきとめて
  同値類の代表列を使うことができて、代表列のd'+1番目の値を得ることができる
  決定番号の定義により、代表列のd'+1番目の値=出題の実数列のd'+1番目の値であるので
  これにて、めでたく 出題の実数列のd'+1番目の値を的中できる!
2)さて、問題は 上記『何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た』の部分
 >>112の3)〜5)に 既に述べたように そのような d'なる値を得ることはできない
 ∵ 決定番号の集合は、無限集合で その平均値(期待値)は、発散して 非正則分布(>>8)を成すから
3)なので、上記1)〜2)の如く、箱入り無数目を成り立たせている手法が 数学的(原理的)に成り立たない
 ゆえに、100列だろうが 100人の数学者だろうが ナンセンスなパズルにすぎない!■
146
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/08(日)16:07:44.42 ID:cYYLjQao(1/4) AAS
>>144
論点がズレているし
”あなたの読解は、問題の設定と解答の流れに沿ったものとして非常に合理的です”w
ってさ
AIの ”ヨイショ”だよ
「大将、あんたはエライ!」と ”ヨイショ”しているw(AIも 商売人だね or AI芸者ww だわwww(^^)

えーと、まず
Q:確率論で 裾の重い確率分布の定義とは?
と AIに聞いてみて

すると、確率分布の裾の減衰の話が出てくるだろ?
それで、本来は 正規分布のように、→∞ まで 範囲を考えるときは
→∞ で減衰しないといけない (そうしないと 積分なり和が発散するから)
正規分布は指数関数的に減衰するんだ

一方で、裾の減衰が遅い分布というものがある
これを 確率論では、裾の重い確率分布という

よく知られるように、定積分 ∫ 1〜∞ (1/x)dx は、収束しない(つまり発散だ)
∫ 1〜∞ (1/x^(n))dx と指数n を入れて考えるとき、指数nが1より大きく 十分大きいときは 収束が早い
一方、指数nが1より大きいが 1に近いとき 収束が遅い
そして、指数n=1 のとき もう収束しないのです
(1/xの無限大までの定積分が発散することは、学部1年生の常識だろう)

さて、指数n=-1 のとき 即ち 定積分 ∫ 1〜∞ xdx は? 当然 収束しない!
これを、箱入り無数目に当て嵌めると
明らかに 決定番号d は 自然数N全体を渡るから d→∞ までを考える必要があるのです

で、決定番号d は、dが大きくなるときに、果たして減衰するか? 答えは No。ならば、確率分布として使えない!
(∵ 積分ないし和が、発散するから)
このことを、>>8 において ”非正則分布は確率分布ではない!?” 外部リンク:ai-trend.jp
で 注意喚起しているのです
181
(1): 06/11(水)21:24:12.42 ID:Haft9BYx(1) AAS
>>179
>箱入り無数目に当てはめてみよう
>いま、1つの試行で「2枚の硬貨」を使って、箱に X=0,1,2の数字を入れていくとする
>例えば、(1,2,1,0,1,2,・・・)となったとしょう
>各項の数は、箱の中で 出題者にしか分からない
>確率変数に付番をつけると
>X1=1,X2=2,X3=1,X4=0,X5=1,X6=2,・・・
>となる
>X1=1の X1は付番された確率変数だ。
>しかし、変数だからコロコロ変化するわけではない! 一つの試行では変化しない!!
>別の試行においては、X1=2に変化したり X1=0になったりすることはありうる

もしかして、各々の箱の中身は各々の試行結果として
「各々の試行結果は確率変数」
と誤解してる?

確率変数の定義からどうやってそんな「ウソ」が導ける?

これじゃ大学1年の一般教養の微分積分と線形代数で
理論が全く理解できずに落ちこぼれるわけだわ・・・
185
(1): 06/12(木)16:09:37.42 ID:ypDiyCQ1(2/2) AAS
これいいね(学部1年の1日目で詰んだオチコボレさんには、「大学の確率論 無理ゲー」よく分かるわ ;p)
動画リンク[YouTube]

大学の確率論が難しすぎて...学べるのは4年生から!?【挫折しました】
人工知能とんすけ
2022/02/20
大学数学は難しいと世間では言われていますが、はいその通りです。ただ、高校数学の印象で難易度を測ってしまうととんでもない過ちを導きます。組み合わせ論なんて言葉は簡単ですが、かの有名な4色問題がありますし、確率論も簡単そうですが、そもそも確率とは?というところから出発するので簡単ではありません。数学が難しすぎて鬱になった先輩・後輩を見てきましたが、例外なく私も鬱になりました。それくらい大変でしたというお話です。ただ、確率論を学ぶと応用先がかなりあるのでつぶしがききます。機械学習・人工知能・数理ファイナンス・データ分析・経済系いろいろいけます。

コメント
@Constitutional_Carry
2 年前
確率論をやると測度への理解がグッと上がると思う
ウィーナー空間を勉強すると空間に測度を入れるという感覚がすごい掴めると思う
他の解析の分野だと(多分大体)ルベーグ測度で事足りてて、測度を変換したり、無限次元で解析したりっていうのは確率論ならではですよね
287: 07/22(火)07:53:33.42 ID:dtV915iA(1) AAS
>>273
2chスレ:math

>箱入り無数目は 全事象Ωが発散している
|Ω={1,2} のどこが発散してるのか言ってみ?
>箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで
>全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N
>(なお、2^Nは非可算無限だね)
>よって、『箱入り無数目は 全事象Ωが発散している』

はい 間違い
はい ●違い

|Ω={1,2}は2列のいずれかを選択することが試行

2は箱の中身の種類ではなく、列の数

残念でした
329: 10/01(水)22:50:55.42 ID:se1EkIsK(5/5) AAS
否定されたことも分からないと?
332: 10/02(木)01:24:04.42 ID:TwEtyvhN(2/5) AAS
>>330
>箱入り無数目の なかなか気づかない傷は、決定番号の分布が 裾が減衰しない分布(非正則>>295)で
はい、大間違いです。
100列の決定番号は定数なので分布は意味を為しません。
これ、過去何百回何千回と言ってるんだが、君、言葉が分からないの? 言語障害? 病院行きなさいよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.021s