スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
63: 03/19(水)13:22:57.37 ID:Mn1byCuH(1) AAS
>>61
無限列が「真の」乱数列か否かによらず、自らが属する同値類の代表列とは
ほとんどすべての項で(つまりたかだか有限個の項以外で)一致する
したがって、無限個の項からランダムに1つ選べるのなら、
ほぼ確実に同値類の代表列の対応する項と一致するから当たる

しかしながら項が可算個の場合、すべての項が等確率になるような測度が設定できない
したがって選べる項を有限個に限定した上で、その中で同値類の代表列との不一致項が
たかだか1つになるようにしたい
「箱入り無数目」の箱(項)の選択方法とはまさにそのようなものである

「箱入り無数目」では乱数理論、確率過程論、情報理論は全く不要である
ただ選択公理のみ理解すればいい
しかし大学1年の微分積分と線型代数が理解できなかった人は
選択公理も理解できないらしく、とんちんかんな言いがかりばかりつけてくる
哀れなものである
111: 06/06(金)09:25:25.37 ID:t1PHShRb(1) AAS
現代数学の系譜 雑談 ◆yH25M02vWFhP は
これを理解できるまで百回、千回、いや一万回でも読み直せ

>>2
>さて, 1〜100 のいずれかをランダムに選ぶ.
>例えばkが選ばれたとせよ.
>s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.

【時枝正の誤解】
s^1の決定番号が他の列の決定番号どれよりも大きい確率は1/100
s^2の決定番号が他の列の決定番号どれよりも大きい確率は1/100

s^100の決定番号が他の列の決定番号どれよりも大きい確率は1/100

【正しい理解】
他の列の決定番号どれよりも大きい決定番号を持つ列s^l (既に決まっている)

回答者が列s^1を選ぶ確率は1/100
回答者が列s^2を選ぶ確率は1/100

回答者が列s^lを選ぶ確率は1/100

回答者が列s^100を選ぶ確率は1/100
141
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/07(土)23:27:37.37 ID:OvOEHj+C(5/5) AAS
つづき

2. 確率変数とは?
確率変数は、確率空間上で定義される関数です。
つまり、確率変数 ( X ) は標本空間 ( Ω ) から実数(または他の数学的対象)への写像:
[ X: Ω → R ]
各 ( ω ∈ Ω ) に対して、( X(ω) ) は実数値を取ります。
例えば、サイコロの目を表す確率変数 ( X ) を考えると、
[ X(1) = 1, X(2) = 2, X(3) = 3, X(4) = 4, X(5) = 5, X(6) = 6 ]
となります。
確率変数 ( X ) が適切な確率論の枠組みで扱えるようにするためには、可測性の条件を満たす必要があります。
つまり、( X ) の逆像 ( X^{-1}(B) ) が ( F ) に含まれるような集合 ( B ) に対して、確率を定義できることが必要です。

3. 確率空間と確率変数の関係
確率変数は、確率空間の標本点 ( Ω ) に対して数値を割り当てる関数であり、確率空間の構造を利用して確率を定義します。
・確率変数 ( X ) によって、標本空間 ( Ω ) の事象を実数値の事象に変換できる。
・確率測度 ( P ) を用いて、確率変数の値が特定の範囲に入る確率を計算できる。
・確率変数の分布(確率分布)は、確率空間上の測度 ( P ) を通じて決まる。
例えば、確率変数 ( X ) の値が 3 以下である確率は、
[ P(X ≦ 3) = P({Ω ∈ Ω | X(Ω) ≦ 3}) ]
のように、確率空間上の事象の確率として表されます。

4. まとめ
・確率空間 (Ω, F, P) は、確率論の基盤となる枠組み。
・確率変数 ( X ) は、標本空間 ( Ω ) から実数への関数であり、確率空間の構造を利用して確率を定義する。
・確率変数の分布や確率計算は、確率空間の測度 ( P ) を通じて決まる。
この関係を理解すると、確率論のさまざまな概念(期待値、分布関数、条件付き確率など)がより明確になります。さらに詳しく議論したい場合は、具体的な確率変数の例や分布の性質について掘り下げることもできます!
(引用終り)
以上
230: 06/14(土)19:23:20.37 ID:pmXx3B9i(12/14) AAS
オチコボレは自分が絶対正しいと信じて疑わず他人の言葉がまったく耳に入らない
病気だね
269: 07/13(日)17:47:37.37 ID:eP+77PGB(1) AAS
馬鹿:国語の問題
301: 09/30(火)21:32:27.37 ID:WSqccKjJ(3/9) AAS
>>295
>いま、簡単に Ω=N={1,2,3,・・,n,・・・} 自然数全体を考えよう
はい、大間違いです。
箱入り無数目の標本空間は「1〜100 のいずれかをランダムに選ぶ」から分かる通り有限集合{1,2,・・・,100}ですから。
これ、過去何百回何千回と言ってるんだが、君、言葉が分からないの? 言語障害? 病院行きなさいよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.043s