スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
40: 01/16(木)05:17:22.14 ID:q09NtzhZ(3/5) AAS
箱入り無数目
云ってること
1.無限列xに対して尻尾同値類の代表列r(x)が選択公理により取れて、両者の比較により決定番号d(x)が得られること (集合論)
2.有限個の自然数niに対して、それぞれ以外の全部の最大値Niを得たとき、たかだか1個を除いて、ni<=Niであること (全順序集合の初等的性質)
3.n個からランダムに1個選ぶ確率は1/n (高校レベルの確率論)
云ってないこと
0.無限列n組の空間(S^N)^nで、i番目(1<=i<=n)の列の決定番号が他より大きいもの全体の集合の確率測度が1/n以下 (大学レベルの測度論)
172(1): 06/10(火)18:26:30.14 ID:Dv67HRUE(1/2) AAS
>>170
>「確率変数とは 試行の結果によって値が決まる変数を確率変数という」なのです
然り
>つまり、一つの試行で 一つ値が決まる ということ
然り
>つまり、一つの試行内では、一つ値が決まって その値は変化はしない
然り
>だが、別の試行では、別の値が決まる
然り
箱入り無数目で、試行の結果によって箱の中身の値が変わることはない
したがって、箱の中身は確率変数ではない
箱入り無数目で、試行の結果によって選ぶ列は変わる
したがって、回答者が選ぶ列は隔離変数である
箱入り無数目の回答者は一人でなくていい
一つの問題を使いまわせばいい
そして同時並行で不特定多数の回答者にいっぺんに選ばせればいい
試行がシーケンシャルでなければならない理由はない
現代数学の系譜 雑談 ◆yH25M02vWFhP は今ここで野垂れ死んだ
アーメン
180(2): 06/11(水)19:32:25.14 ID:gs+rMRXF(3/3) AAS
>>179
>5)これを、箱入り無数目に当てはめてみよう
> いま、1つの試行で
> 「2枚の硬貨」を使って、箱に X=0,1,2の数字を入れていくとする
はい、大間違いです。
「さて, 1〜100 のいずれかをランダムに選ぶ. 」から分かる通り、箱入り無数目における試行は 1〜100 のいずれかを選ぶこと。
wikipedia「確率変数」より引用
確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。各事象は確率をもち、その比重に応じて確率変数はランダム[1]:391に値をとる。
分かったか? 分かったらスレ削除依頼出しとけよオチコボレ
250: 06/18(水)14:36:30.14 ID:Qh/3AgjL(1/2) AAS
>>249
>補足
間違いを補足しても正しくならない。
試行(従って標本空間)を誤読しる間は決して正解には辿り着かないよオチコボレさん。
285: 死狂幻調教大師S.A.D.@月と六ベンツ 07/22(火)00:21:12.14 ID:ZnBKkxgU(4/5) AAS
孤独にはリスクがあるというか。
300: 09/30(火)21:30:15.14 ID:WSqccKjJ(2/9) AAS
>>294
>コルモゴロフの測度論による 確率計算では
>もし 区間[0,1]の実数rを 一つの箱に入れて
>それを 箱を閉じたまま 当てるときの確率は 0
はい、まったくトンチンカンです。
箱入り無数目の確率はまったく別物ですから。
これ、過去何百回何千回と言ってるんだが、君、言葉が分からないの? 言語障害? 病院行きなさいよ
323: 10/01(水)15:13:49.14 ID:Yz9zq5y2(1) AAS
>>322
>出題を確率事象と解釈できるじゃないかと主張する者が居たとする。
まあね
でもそういう人は記事をしまいまで読んでないか
読んでるけど全然理解する気がないかだね
それはダメじゃん
だってどう計算してるか記事に書いてあるし
それ読めば何を確率事象としてるか(答:100列から1列選ぶ行為)
それに対してどういう確率分布考えてるか(答:どの1列選ぶのも確率1/100)
丸わかりじゃん
それ否定するって端的に人の話を聞く気がない俺様野郎じゃん
OTとかいう爺ィはまさにその典型
多変数複素関数論とやらでどれほどスゲェ業績あげたか知らんけど
俺そっちに全然興味わかねぇからどうでもええわ(バッサリ)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.036s