スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
240: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 10:29:45.54 ID:lv2xCBEK >>239 つづき s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N を、一つの試行と考えたとき >>1のような 決定番号dを考えることができる もし、問題列 s = (s1,s2,s3 ,・・・) について 決定番号d を 推測できる方法があれば 問題列で、d+1以降の数列のしっぽの箱を開けて 問題列の属する 同値類を特定して 同値類代表 s'=(s'1, s'2, s'3,・・・ )を知り 決定番号の定義から(>>1) sd=s'd とできて sdを箱を開けずに的中できて 回答者の勝ち ところで、このような 決定番号d は、存在するけれども あたかも 測度論の零集合類似の性質を持つのです つまり、決定番号dは あきらかに →∞ に発散するので その集合は 無限集合になる 例えれば、可算無限列の長さを考えると 明らかに可算無限長で 一方、決定番号dまでの長さ 1〜d は、有限長さ よって、d/∞=0 よって、決定番号dは、可算無限長において、先頭の長さ0部分(零集合)での 確率計算にすぎない ここが、箱入り無数目のトリック部分 可算無限長の 先頭の長さ0部分(零集合)で 確率99/100を導く どっこい その実 (99/100)*0=0 の議論でしかない ここは、我々の日常が 数学的には 無限集合のNやRを想定しているが その実、有限の数の中で暮らしている こと それが、日常生活では 全く無意識で 当たり前になっている 真に無限大を考えることが殆ど無いので 箱入り無数目のような場合に遭遇すると 無意識の日常有限の思考に引き摺られて 無限トリックだと なかなか気づかない そういう 箱入り無数目トリックの仕掛けなのです http://rio2016.5ch.net/test/read.cgi/math/1736907570/240
241: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 10:52:59.58 ID:lv2xCBEK >>240 補足 >つまり、決定番号dは あきらかに →∞ に発散するので 専門的には、>>8 の 非正則な分布(発散する分布)を 使っていると言うことです http://rio2016.5ch.net/test/read.cgi/math/1736907570/241
249: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/18(水) 13:52:59.74 ID:1ZjEJMOG >>247 & >>239 補足 1)いま、出題の列 s = (s1,s2,s3 ,・・・) で コイントスの 0,1 の2進値をランダム入れたとする 対するしっぽ同値列 s'=(s'1, s'2, s'3,・・・ )で 決定番号d のとき、(s1,s2,s3 ,・・,sd-1) と(s'1, s'2, s'3,・・,s'd-1) で場合を数を考えると、sd-1≠s'd-1で無ければならないが、1からd-2は自由だから 2^(d-2)通り 2)dには上限なく 自然数全体を渡るから 決定番号の集合濃度は 2^Nで、アレフ ℵ1 非可算無限濃度 つまり、同値類は集合としてみた場合は、全体は非可算集合です 一方、有限の決定番号d の場合の数は 2^(d-2)で、有限です 3)いま、『箱入り無数目』の>>2のように 100個の決定番号d1〜d100と その最大値dmaxについて考えると "d1〜d100 ≦ dmax"の議論は、可算無限長の 先頭の長さ dmax の有限の議論であり それは、非可算無限中に比べれば 無限小に等しい(即ち確率零の集合の中の話) 即ち、これを 出題列を有限長さの針に例えると、有限di≦dmaxの議論は、あたかもほんの針の先の中の議論なのです 4)さて、これを>>240-241の確率分布の減衰の視点で見ると 『箱入り無数目』においては、減衰どころか 裾が増大し 全体として発散している 即ち、上記2進値のとき、dが1増えると 場合の数は2倍になる 10進値ならば10倍、n進値ならばn倍、全自然数NならばN倍、全実数Rならば非可算倍*)となる ( *)n次元R^n→n+1次元R^n+1 ということ) 5)さて、最後の例 全実数Rなら非可算倍で、ユークリッド空間で次元が違う話です(全体では無限次元空間) 『箱入り無数目』はトリックで、有限の99/100の話に矮小化される そのトリックとは、本来は可算無限長の数列について、うまく 列先頭の有限長の話にすり替える**) そこが、人は日常 真無限に不慣れで かつ 有限の世界に暮らしているゆえ まんまと d1〜d100 ≦ dmaxに乗せられ騙されるのです 分かってしまえば、他愛もない子供だましにすぎないのです **)ここを、確率論の観点から補強すると 1)0,1 の2進値を、箱に入れた場合、決定番号d とは、上記の通り 二つの数列 s = (s1,s2,s3 ,・・・) s'=(s'1, s'2, s'3,・・・ )で d番目以降の可算無限の数が一致する 即ちその確率 P=(1/2)^N=0 2)勿論、10進値でも P=(1/10)^N=0 n進値でも P=(1/n)^N=0 3)そして、任意実数ならば、P=(1/R)^N=(0)^N (即ち(1/連続濃度)^N(可算乗)です) 『箱入り無数目』のトリックとは、可算無限長の数列の先頭の確率零の集合内の話にすり替えて 99/100を導く。結局 (99/100)x0=0 なのです■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/249
252: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/20(金) 16:48:33.66 ID:S3g1Aii2 >>249 追加 1)いま、出題の列 s = (s1,s2,s3 ,・・・) で 箱入り無数目では、100列に並べ替える (mod 100を使えば良い) 勿論、2列でも可です (mod 2を使えば良い) また、箱入り無数目の決定番号を使う 確率99/100が正しいならば 2列なら確率1/2となる 2)だが、出題の列 s = (s1,s2,s3 ,・・・) の並べ変えなど 面倒なことをせずに ダミーの列 t = (t1,t2,t3 ,・・・) を、(回答者が勝手に作って)隣に作ればいいのです ダミーの列の決定番号 dt に対し、問題の列の決定番号 ds として ds ≦ dt となる確率は 1/2 だという*) ( *)箱入り無数目論法より>>2) よって、ダミーの列の箱を開けて 決定番号dtを得て さらには、ds = dt を考慮すれば、dt+2を使って 出題の列 sのdt+2番目以降の箱を開け、出題の列 sの代表を得て 「その代表のdt番目数=出題の列のdt番目数」と唱えれば あ〜ら ふしぎ dt番目の箱の数を、箱を開けずに 確率1/2で適中できるとさ!w ;p) 3)さて、上記2)項の手法が、本来の箱入り無数目より、奇妙奇天烈なのは ダミーの列 t は、そもそも 出題の列 s とは何の関係も無い列であるにも関わらず 出題の列 sの dt番目数の任意実数を、箱を開けずに 確率1/2で適中できるのに使えるとは これ如何に?w ;p) 4)さらに、箱入り無数目の>>2通りに、99列を 出題の列 sのとなりに並べて 列 t1,t2,t3,・・,t99 とやれば dt1〜dt99 までの99個の決定番号が手に入る。その最大値 dtmax=max(dt1,・・,dt99) を取って ds ≦ dtmax となる確率は 99/100 となる (箱入り無数目論法より) 上記2)項の手法で、出題の列 sのdtmax+2番目以降の箱を開け、出題の列 sの代表を得て 「その代表のdtmax番目数=出題の列のdtmax番目数」と唱えれば あ〜ら ふしぎ dtmax番目の箱の数を、箱を開けずに 確率99/100で適中できるとさ!w ;p) (箱入り無数目論法>>2の通り、99列をもっと大きな任意の数の列にすれば、”確率1-ε で勝てることも明らかであろう”w) これまた、本来の箱入り無数目よりも 奇妙奇天烈な 数学パズルなり〜! 要するに、>>249で述べた如く 決定番号dなる量は、本質的に発散している量であって 非正則分布を成すゆえ (>>154の4)項ご参照) 複数 n個の決定番号を選んで n個の中のある決定番号dが、最大値となる確率1/nとして ”確率1-ε で勝てることも明らかであろう” (ここにε=1/n) と主張するのだが ここが、数学トリックで 数学パズルなのです!w ;p) http://rio2016.5ch.net/test/read.cgi/math/1736907570/252
257: 132人目の素数さん [sage] 2025/06/22(日) 09:09:01.25 ID:e5q/Q8+J >>253-256 >dが確率変数ならDも確率変数であって定数ではない ふっふ、ほっほ 確率変数→変数→ 変数vs定数 という 中学生レベルの連想ゲーム 大間違いですよ 確率変数は、基本的には関数ですよ 下記を百回音読してね (参考) https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%A4%89%E6%95%B0 確率変数 実例 例えば、任意に抽出した人の身長を確率変数とする場合を考える。 数学的には、確率変数は 対象となる人→その身長 という関数を意味する。 確率変数は確率分布に対応し、妥当にあり得る範囲の確率(身長180cm以上190cm以下である確率や 150cm未満または200cm超である確率)を計算できるようになる。 https://wiis.info/math/probability/random-variable/random-variables/ wiis 確率変数の定義 標本点に対して実数を1つずつ割り当てる写像を確率変数と呼びます。 <動画解説> https://youtu.be/6_XXwZlZi1Y?t=1 [数B] [統計#1]確率変数を基礎から徹底解説!初心者でもすぐに理解できる統計授業![統計的な推測] たにぐち授業ちゃんねる 2022/11/11 0:48 確率変数とは? (文字起こし) 3:18 Xを1つ決めると 確率が 定まるこの Xを確率変数という風に 言います 4:00 Xを1つ決めると 確率が1つ 決まるわけですよね ちょうど 関数みたいな 振る舞いをしていますよねこれを 確率版の関数と考えて 確率関数という風に呼びこのように 表すことにします <補足説明> 関数X:事象→x(実数) (記号の濫用というか 記号の節約で 関数Xとその値x(実数)をしばしば 区別せずにXを使います) X(実数)→ 確率 です 高校レベルでは、これで十分です(大学レベルでも およそこの程度で十分です) http://rio2016.5ch.net/test/read.cgi/math/1736907570/257
295: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/24(水) 07:03:01.32 ID:j35MrpIq 転載 https://rio2016.5ch.net/test/read.cgi/math/1736907570/344 <純粋・応用数学・数学隣接分野(含むガロア理論)21> 補足 (引用開始) いま、下記 都築暢夫 多項式環F[x](今の場合R[x])は、線形空間として(可算)無限次元だったことを思い出そう 無限次元線形空間から、作為をもって 有限次元の多項式を要素として 多項式を 選択することは可能だが しかし、ランダムに 無限次元線形空間から 任意の要素を選べばどうなるか? その答えは、無限次元線形空間とランダム性とは 馴染まないってことだね (直観的には 無限次元空間だから 無限次元の要素であるべきだが 多項式でそれは成り立たないので 矛盾) つまり、下記の非正則事前分布と同じで、非正則分布を成すので コルモゴロフによる公理系 P(Ω)=1 (全事象Ωに1を与える)を満たすことが出来ない(ランダム性は考えられない)■ これが、箱入り無数目トリックです (引用終り) 分りにくいので 補足しよう いま、簡単に Ω=N={1,2,3,・・,n,・・・} 自然数全体 を考えよう これは、下記で 離散一様分布{1,2,3,・・,n}で n→∞ の極限を考えることに相当する 1〜nの離散一様分布では、平均(期待値) E[X] (n+1)/2 だね ここで、n→∞とすると 平均(期待値) E[X] →∞ と 無限大に発散する つまり、自然数全体 N={1,2,3,・・,n,・・・}において 平均(期待値)は、 E[X] →∞に発散するのです (標準偏差も同様に →∞に発散する) 個々の元 n は 有限なのだが 上限がなく発散しているが ゆえに 平均(期待値) E[X] →∞に発散する つまり、N={1,2,3,・・,n,・・・} から ランダム(無作為)に一つ元を選べば その期待値は →∞に発散する 一方、どの元nも有限 つまり、矛盾 よって、自然数全体N={1,2,3,・・,n,・・・}の ランダム(無作為)抽出は 不成立!■ (参考) https://mathlandscape.com/unif-distrib/ mathlandscape.com 一様分布の定義と性質のわかりやすいまとめ〜離散型・連続型〜 2022.03.06 離散一様分布 定義(離散一様分布) 確率変数 X が 1,2,3,…,n 上離散一様分布 (discrete uniform distribution) に従うとは, P(X=k)= 1/n (1≤k≤n) となることである。 X=1,2,3,…,n となる確率が等しいということ <一様分布の諸性質まとめ> 平均(期待値) E[X] (n+1)/2 標準偏差 1/2√{(n^2-1)/3} http://rio2016.5ch.net/test/read.cgi/math/1736907570/295
297: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/26(金) 20:31:46.87 ID:GhrkeCh0 転載 https://rio2016.5ch.net/test/read.cgi/math/1753002417/371 <純粋・応用数学・数学隣接分野(含むガロア理論)21> >数学辞典の第5版に入るかどうかは微妙 ID:fkgyLEZd は、御大か 巡回ご苦労さまです 1)さて、下記の重川一郎 確率論基礎と対比してみよう ・まず、現代確率論では、下記の通り 確率変数Xtで 添え字として、可算Z+={0,1,2,・・・} あるいは連続の [0,∞)が扱える いま、簡単に iid(独立同分布)を仮定する ・時枝手法により 可算無限個の確率変数Xt の列から 一つ iid(独立同分布)の反例が出来る 即ち、例えば コイントスなら1/2,サイコロなら1/6の確率であるにも かかわらず 可算無限個の確率変数Xt の ある一つが、確率99/100になる これは同分布に矛盾 可算無限個の確率変数Xt の ある一つが、他の値から確率99/100で推定可能 これは独立に矛盾 ・また、Xtで 連続添え字 [0,∞)の場合には、可算無限個の確率変数Xtから 可算無限個もの列で 矛盾例が生じる 2)厳密を重んじる数学テキストでは 重川先生は、時枝先生の論を認めるならば、テキストの書き換え要だよね 3)しかし、寡聞にして 確率論のテキストに 時枝氏の記事を取り入れた 大学確率論テキストはない!■ よって、数学辞典の第5版に 入るはずもない ;p) (参考) https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html 重川一郎 https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 P7 確率空間例サイコロ投げの場合 確率空間として次のものを準備すればよい. Ω={1,2,・・・,6}^N∋ω={ω1,ω2,・・・} ωnは1,2,・・・,6のいずれかで,n回目に出た目を表す. 確率はη1,η2,・・・ηnを与えて P(ω1=η1,ω2=η2,・・・ωn=ηn)=(1/6)^n と定めればよい.これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorovの拡張定理と呼ばれる定理により証明できる. P47 第4章ランダム・ウォーク 単純ランダム・ウォーク 定義1.1 時間t∈T をパラメーターとして持つ確率変数の族(Xt)を確率過程という. Tとして[0,∞), Z+={0,1,2,・・・}などがよく使われる. [0,∞)のとき連続時間, Z+のとき離散時間という. 定義1.2. X1,X2,・・・をiidで各分布は 略 ベルヌーイ列とする https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B%E5%90%8C%E5%88%86%E5%B8%83 独立同分布 独立同分布に従う(英: be independent and identically distributed; IID, i.i.d., iid)とは、 2つ以上の確率変数がそれぞれ全く同じ確率分布に従っていて、 かつ互いに独立している状態のことを指す。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/297
303: 132人目の素数さん [] 2025/09/30(火) 22:47:18.34 ID:JTSEwgcW 何度同じことを言ってもわからない相手に もし本当にわからせたいと思うのであれば 言い方を変えたりする工夫が必要なのではないだろうか http://rio2016.5ch.net/test/read.cgi/math/1736907570/303
330: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/10/01(水) 23:52:51.26 ID:Y4ope7xu >>325 追加 >ロジックに傷がない理論は何通りもありうる 箱入り無数目の なかなか気づかない傷は、決定番号の分布が 裾が減衰しない分布(非正則>>295)で 従って、確率が考えられない(確率を考えてはいけない)ことです 下記の 裾の重い分布とPower law (べき乗則)で説明します ・確率分布の裾がガウス分布のように指数関数的に減衰する場合、平均値や標準偏差が求まります しかし、裾の重い分布では 平均値を持たなくなります (標準偏差も定義できない) ・これは 下記の (べき乗則)Power law で説明できる べき乗則 x^−kで k>2 の場合にのみ 平均値を持ちます ・もし x^−k でk=1の場合 は、積分値が発散します 即ち ∫ x=1〜∞ 1/x dx =∞ です この場合は、当然平均値も∞に発散します また、確率を考えること自身ができなくなります ここが、箱入り無数目トリックです (参考) https://ja.wikipedia.org/wiki/%E8%A3%BE%E3%81%AE%E9%87%8D%E3%81%84%E5%88%86%E5%B8%83 裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的 (subexponential) などがある。 https://en.wikipedia.org/wiki/Power_law Power law (べき乗則) Lack of well-defined average value A power-law x^−k has a well-defined mean over x∈[1,∞) only if k>2, and it has a finite variance only if k>3; most identified power laws in nature have exponents such that the mean is well-defined but the variance is not, implying they are capable of black swan behavior.[2] (google訳) 明確に定義された平均値の欠如 べき乗則 x^−k 明確に定義された平均値を持つ x∈[1,∞) k>2 の場合にのみであり、有限分散となるのは k>3;自然界で確認されているべき乗法則のほとんどは、平均は明確に定義されているが分散は定義されていない指数を持ち、ブラックスワン挙動を起こす可能性があることを意味しています。[ 2 ] The median does exist, however: for a power law x^ –k, with exponent k>1, it takes the value 2^(1/(k – 1))xmin, where xmin is the minimum value for which the power law holds.[2] (google訳) しかし、中央値は存在します。べき乗則x^ – kの場合、指数は k>1 、2^(1/(k – 1))xminという値をとります。ここで、xmin はべき乗法則が成り立つ最小値です。[ 2 ] http://rio2016.5ch.net/test/read.cgi/math/1736907570/330
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.024s