スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
上下前次1-新
20(1): 01/15(水)11:40 ID:kITRkOLu(1/3) AAS
>>1-2
箱入り無数目論法
自然数100個の組(n1,…,n100)から(N1,…,N100)への写像
Ni=max(ni以外の99個の自然数)
このときN1,…,N100のうち99個は
N=max(n1,…,n100)と等しいから
ni<=Ni=Nとなる
ni>Niとなるのは
ni=Nで、ni以外のnjがnj<Nの場合だけ
100列から1列選ぶだけだから
100個の決定番号から1個選ぶだけ
ni>Niでなければ、決定番号の性質から
元の数列と代表列のNi番目の項が一致する
1.100列の決定番号の中で最大値をもつ列が2列以上の場合、必ず当たる
2.100列の決定番号の中で最大値をもつ列が1列のみの場合、確率99/100で当たる
問題の100列は固定されているのだから、場合分けだけすればよく
それぞれの場合の「確率」など考える必要は全くない
2の「さらに」以降、および >>3-19 は読まなくていい 見当違いだから(バッサリ)
21: 01/15(水)11:47 ID:kITRkOLu(2/3) AAS
>>2
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.
逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,
この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」
2行目以降は無意味
そもそもR^N上の確率測度なんて全く考えてないから
22: 01/15(水)11:48 ID:kITRkOLu(3/3) AAS
>>3
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)
しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
全部、無意味
そもそも箱は確率変数ではない
23: 01/15(水)11:54 ID:Cvd+i7JL(1) AAS
>>2
> さて, 1〜100 のいずれかをランダムに選ぶ.
> 例えばkが選ばれたとせよ.
> 列s_kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
ここが肝心
なぜ1/100かは、>>20で述べた通り
だからR^Nの確率測度なんか考えてないし、各箱も確率変数ではない
24: 01/15(水)12:27 ID:zEkLeAcw(1) AAS
>>1
私は馬鹿なので
「出題列を2列に並べ替えた時の決定番号の組(d1,d2)がいかなる自然数の組なら勝つ確率が1/2に満たないか」
に答えられず逃げ続けています
をテンプレに入れとけ言ったろ無能
25(1): 01/15(水)12:57 ID:IXB30gR8(1) AAS
箱入り無数目で云ってること
1.無限列xに対して尻尾同値類の代表列r(x)が選択公理により取れて、両者の比較により決定番号d(x)が得られること (集合論)
2.有限個の自然数niに対して、それぞれ以外の全部の最大値Niを得たとき、たかだか1個を除いて、ni<=Niであること (全順序集合の初等的性質)
3.n個からランダムに1個選ぶ確率は1/n (高校レベルの確率論)
箱入り無数目で言ってないこと
0.無限列n組の空間(S^N)^nで、i番目(1<=i<=n)の列の決定番号が他より大きいもの全体の集合の確率測度が1/n以下 (大学レベルの測度論)
26(1): 01/15(水)17:58 ID:cDKFP1/O(1/4) AAS
>>25
従ってそれが勝つ戦略であるというところが怪しい
27: 01/15(水)18:27 ID:Cmnz2SCH(1/5) AAS
>>26
「問題を複数回出題しなければ確率が求まるわけがない!」
という貴様の思い込みが間違ってる
28: 01/15(水)18:31 ID:cDKFP1/O(2/4) AAS
求まった確率の意味が確認できなければいけない
29: 01/15(水)18:57 ID:cDKFP1/O(3/4) AAS
チープな数学はあってよいが
チートな数学は有害無益だろう
30(2): 01/15(水)19:27 ID:cDKFP1/O(4/4) AAS
論理パズルとして完結していることは
ロジックに穴がないことが確認できた時点で
理解できたのだが
出題者と回答者が競い合うゲームと見たときには
戦略の実行過程にやや不明確な点が
残っている
31: 01/15(水)19:59 ID:Cmnz2SCH(2/5) AAS
>>30
> 出題者と回答者が競い合うゲーム
勝手に間違った嘘を思い込まれてもね ●違い?
>戦略の実行過程にやや不明確な点が残っている
明確でないのは耄碌してるからじゃね?
32(1): 01/15(水)20:41 ID:EZoMBTL8(1/3) AAS
>勝手に間違った嘘を思い込まれてもね
勝ち負けがあるわけだから
そういう見方もできるのでは?
33(1): 01/15(水)20:46 ID:EZoMBTL8(2/3) AAS
>明確でないのは耄碌してるから
出題と回答が一回きりということであれば回答者が
その戦略で勝つ確率の
理論値というものには明確な意味があるが
無数回続けたとすればどうなるということも
無意味な問題ではないのではないだろうか
34(1): 01/15(水)20:51 ID:Cmnz2SCH(3/5) AAS
>>32
勝ち負けがあるからそう見るしかない、と思うならそいつは●違い
35: 01/15(水)20:53 ID:Cmnz2SCH(4/5) AAS
>>33
出題は1回だが、回答は1回ではない だから確率なのであるw
対戦ゲームとかいう妄想は捨てな ●い●ぬよ
36(1): 01/15(水)21:00 ID:Cmnz2SCH(5/5) AAS
任意の無限列100列について箱入り無数目の戦略で選ばれる100箱が存在する
そして、それらは
1.100箱のうち99箱が尻尾同値類の代表の対応する項と一致し、一箱が不一致
2.100箱とも尻尾同値類の代表の対応する項と一致するか
のいずれかしかない
このことはどう頑張っても否定しようがない
37(1): 01/15(水)22:52 ID:EZoMBTL8(3/3) AAS
>>36
日本語がおかしい
38(1): 01/16(木)05:13 ID:q09NtzhZ(1/5) AAS
>>37
何がどうおかしいのかな?
「任意の無限列100列について箱入り無数目の戦略で選ばれる100箱が存在する」
箱入り無数目で選ばれる箱は1列につき1箱
100列あれば100箱
なにもおかしくはない
「そして、それら(100箱)は
1.100箱のうち99箱が尻尾同値類の代表の対応する項と一致し、一箱が不一致
2.100箱とも尻尾同値類の代表の対応する項と一致するか
のいずれ(の性質を満たす)かしかない」
つまり、100箱のうち2箱以上が
「中身と、尻尾同値類の代表の(その箱の位置に対応する)項が不一致」
となることはない
だから列をランダム選択する限り、確率1-2/100以下になることは絶対にない
なにもおかしくはない
おかしいのは出題を確率事象にしなければならないと
何の根拠もなく思い込む耄碌爺の貴様だよ
39: 01/16(木)05:15 ID:q09NtzhZ(2/5) AAS
耄碌爺がいかに教授ぶってみせても
いちゃもんが出来の悪い学生レベルなので
みっともないだけ
やっぱり大学1年の数学で落ちこぼれた
工学部卒の馬鹿とつきあってるせいかな
馬鹿って伝染するんだな
40: 01/16(木)05:17 ID:q09NtzhZ(3/5) AAS
箱入り無数目
云ってること
1.無限列xに対して尻尾同値類の代表列r(x)が選択公理により取れて、両者の比較により決定番号d(x)が得られること (集合論)
2.有限個の自然数niに対して、それぞれ以外の全部の最大値Niを得たとき、たかだか1個を除いて、ni<=Niであること (全順序集合の初等的性質)
3.n個からランダムに1個選ぶ確率は1/n (高校レベルの確率論)
云ってないこと
0.無限列n組の空間(S^N)^nで、i番目(1<=i<=n)の列の決定番号が他より大きいもの全体の集合の確率測度が1/n以下 (大学レベルの測度論)
41(1): 01/16(木)06:04 ID:LrNj7Iv2(1/3) AAS
>>34
>勝ち負けがあるからそう見るしかない、と思うならそいつは●違い
「勝ち負けがあるわけだから
そういう見方もできるのでは?」を「勝ち負けがあるからそう見るしかない」
の意味だ、と思うならそいつは●違い
42: 01/16(木)06:22 ID:LrNj7Iv2(2/3) AAS
>>38
>何がどうおかしいのかな?
>「任意の無限列100列について箱入り無数目の戦略で選ばれる100箱が存在する」
「任意の無限列100列について箱入り無数目の戦略で選ばれ得る100箱が存在する」
これは一例に過ぎない
43(1): 01/16(木)07:47 ID:q09NtzhZ(4/5) AAS
>>41
>「勝ち負けがあるわけだからそういう見方もできるのでは?」
耄碌爺は実際には「そうでない見方はない」と言い張ってる
しかもそれを指摘するとそんなことはないと嘘をつき
またそんな見方はないと言い張る これこそ●違い
44(1): 01/16(木)07:48 ID:q09NtzhZ(5/5) AAS
>>43
>「任意の無限列100列について箱入り無数目の戦略で選ばれ得る100箱が存在する」
>これは一例に過ぎない
例外はないが わからんのか? 耄碌爺
45(1): 01/16(木)08:13 ID:LrNj7Iv2(3/3) AAS
>>44
日本語が変
46: 01/24(金)14:39 ID:Y9e4pxHo(1) AAS
>>45
頭が変
47(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/15(土)20:40 ID:XknlDm4+(1/2) AAS
転載 ガロア第一論文と乗数イデアル他関連資料スレ13 より
2chスレ:math
>箱入り無数目のロジックに穴がないことも
>納得した。
おお恐れながら
箱入り無数目のロジックに穴がないとしても rio2016.5ch.net/test/read.cgi/math/1736907570/
1列の場合に矛盾ありです
つまり 1列の出題
s = (s1,s2,s3 ,・・,sn-1,sn,sn+1,・・) ∈R^N を考える
いま しっぽ同値類の代表
s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) ∈R^N であったとして
この場合、sn-1≠s'n-1 として、n以降は一致していて
決定番号d=n です
いま、回答者のAさんが、ある大きな有限の数 D をとって
d < D と出来れば , D 以降の箱 sD,sD+1,sD+2,・・の箱を開けて
出題のしっぽから 同値類を特定して、その代表列
s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) があって
sD-1の未開の箱の数は、定義より d ≦ D-1 が成り立っているので
代表のD-1の数が、未開の箱の数 sD-1 と一定している と宣言すれば、Aさんは勝てる
そして、もし 常に ある大きな数 D をとって
d < D と出来るならば、回答者のAさんは、100%必勝です
だが、これは変です
その解明として、数列を形式的冪級数τ(X)と考えて
τ(x) = s1+s2x+s3x^2・・+sn-1x^n-2+snx^n-1+sn+1x^n+・・ として
上記同様に考えると、代表
τ'(x) = s'1+s'2x+s'3x^2・・+s'n-1x^n-2+snx^n-1+sn+1x^n+・・ として
差を取ると 決定番号d=n より上の係数は消えて
τ(x) -τ'(x) =s1-s'1+(s2-s'2)x+(s3-s'3)x^2・・+(sn-1-s'n-1)x^n-2 :=f(x) (多項式)
と 係数 (sn-1-s'n-1) より小さい部分が残り n-2次多項式に なる
しっぽ同値類とは、形式的冪級数環R[[x]]/R[x] (R[x]は多項式環) という商集合で
しっぽ同値類の代表とは、f(x)∈R[x]、τ(x) =τ'(x)+f(x) ∈R[[x]] です
多項式環R[x]は、任意の自然数より大きい次元の部分空間を持つ無限次元線形空間 (>>419 都築より)
ですから、いま あえて未定義の ランダム*)という言葉を使うと ランダムに選ぶ R[x]の元は(前記の意味で)無限次ですので
”回答者のAさんが、ある大きな有限の数 D をとって d < D と出来る”が不成立です(τ(x) が わかって意図すれば可能です)
( *)”ランダム”を、選択公理に お任せ と考えても良いでしょう)
追伸
いま 100列で考えて、99列から ある大きな有限の数 D を決める
1列が未開で残る。そうすると、上記と同じ状態になります
箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している
そう仮定すれば、ロジックに穴がないかも知れないが
未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです
48(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/15(土)23:17 ID:XknlDm4+(2/2) AAS
転載 ガロア第一論文と乗数イデアル他関連資料スレ13 より
2chスレ:math
ID:rAcOLHcf
補足
・1列の出題の考察から分かること
i)全事象 Ω=多項式環R(x) で、Ωが発散している。つまり、大きすぎる。
だからP(Ω)=1のコルモゴロフの確率公理を満たせない
ii)Ωが発散して 大きすぎるので、大数の法則が成り立たない
・だから、箱入り無数目のロジックに穴がないとしても
99/100 が、未開の1列と 開けてしまった99列が平等だと仮定して導けたとしても
本来の確率論の外、つまり 99/100 は、疑似確率 あるいは 確率モドキ なのです
<補足>
i)全事象 Ωが、大きすぎ Ωが発散しているとき何が起きるか?
簡単なミニモデルとして、Ω=N(自然数)から、数を1つ選んで 大きい数の人が勝ちとする
場に、0,1,2,・・の無限の札が、裏向けに伏せておいた置いてある
Aさんが、ある数a=100億 を選んで、Bさんに示したとする
Bさんは、勝ったと思う。Nは無限集合で、平均値も無限大だから、100億超えの数は簡単に選べるはず
逆も真で、Bさんが先にb=100億 を提示すれば、Aさんが勝つだろう
では、AさんとBさんと、同時に札を開示すればどうか? 確率1/2?
ii)もし、札が有限で 0,1,2,・・,100 までとしよう
そして、何度も繰り返す。そのとき、大数の法則で
どちらが先に開示するか、あるいは同時開示か 大数の法則で 確率1/2に収束するはず
だが、Ω=N(自然数)で 0,1,2,・・の無限の札 を使うと
大数の法則とは合わない。大数の法則が成り立たない
Ω=多項式環R(x) の場合も、上記同様です
繰り返すが、P(Ω)=1のコルモゴロフの確率公理を満たせない
大数の法則が成り立たない
つまり 99/100 は、疑似確率 あるいは 確率モドキ です!
49: 02/17(月)01:04 ID:BrvAu504(1/3) AAS
>>47
>箱入り無数目のロジックに穴がないとしても
>1列の場合に矛盾ありです
そもそも1列の場合が無い。
>閉じた箱を100列に並べる.
君、字が読めないの? 小学校からやり直せば?
上下前次1-新書関写板覧索設栞歴
あと 291 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.018s