雑談はここに書け!【67】 (459レス)
上下前次1-新
抽出解除 レス栞
401(3): 09/28(日)17:47 ID:fvkQNaSZ(1/13) AAS
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの
π=4Σ _{k=0,1,…,+∞}(((‐1)^k)/(2k+1))
=4−Σ _{k=1,2,…,+∞}(2/((2k+1)(2k+3)))
なる有理級数による表示に注意すれば、πに対して、
或る M(π)>1 なる有理数 M(π) が存在して、
M(π) を M(π)=4 とすれば、無理数πに収束する各項が正なる
単調減少な有理数列 {b_n} ∀b_n<M(π) は存在する
403(2): 09/28(日)17:50 ID:fvkQNaSZ(3/13) AAS
(>>401-402 の続き)
m→+∞ とすれば b_{m+1}→π かつ m→+∞ とすれば b_m→π であるから、
m≧N(a) なる正の整数mについて m→∞ とすれば (b_{m+1})^{b_m}→π^π であって π^π≦π を得る
しかし、π^π≦π なることは π^π>π なることに反し矛盾する
この矛盾は、π^π を代数的数と仮定したことから生じたから、
背理法が適用出来て、背理法を適用すれば、π^π は超越数である
406(1): 09/28(日)18:10 ID:fvkQNaSZ(6/13) AAS
>>401の下から3行目について:
或る M(π)>1 なる有理数 M(π) が存在して、
→ 或る M(π)>π なる有理数 M(π) が存在して、
407: 09/28(日)18:33 ID:zxZXlCIa(1/10) AAS
>>401-406
ビューティフルマインドの逆、アグリーマインド
読むだけで脳みそ腐った気分にさせる文書をばら撒くのは犯罪行為
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 1.124s*