空集合があるなら空写像もあるの? (69レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
41: 09/11(木)10:57 ID:/d2O7h0l(1/4) AAS
しかし、外部から持ち込むのは好ましくない。
空数学そのものから、自然に発生すべきである。
数学なのだから数学的対象が必要であり、空数学なのだから「空」が数学的対象である。
この「空」は、集合論や一階述語論理なども持っていないのだから、空集合の公理以前のものである。
公理そのものはメタ的にあるとして、「空の公理」(空集合の公理ではない)のみがあると考える。
42: 09/11(木)11:19 ID:/d2O7h0l(2/4) AAS
空の公理は空集合の公理ではない、ほんとうになにもないという公理だ。
空(から)の公理である。公理の枠だけがある。メタ数学の範疇になるだろう。
公理とは仮定であるが、命題とか前提とかもないとすれば、公理という仮定でもなく、
ただ、「素朴」になにもない。空数学は、いままでの数学の構造を脱構築しようという試みなのか?
ブルバキによる構造やら公理学の導入やら形式主義やらなんやらを脱構築しようというのだろうか。
43: 09/11(木)11:52 ID:/d2O7h0l(3/4) AAS
構造主義の構造とは数学的構造のことである。数学主義と読み替えてもよいだろう。
空数学は、ブルバキやヒルベルトやらゲーデルあたりにまで喧嘩を売る数学であろう。
要請されるのは「空」であることと、「数学とは異なるものを同じものとみなす技術である」(ポアンカレ)という2つだ。
空を単位元とするモノイドと考えれば、自然数論のようなものだが、空数学=モノイド数学なのか?
モノイドだけで数学を再構成/再構築できる?
45: 09/11(木)22:55 ID:/d2O7h0l(4/4) AAS
数学が、同じとみなす技術としての要請があるかぎり、同じとみなしたものの集まりは避けられない。
同じclassに属するものの集まりという概念はポアンカレの要請を満たす。
集合論ではなくclass論。同じclassに属するものの集まりと、classの集まりは区別される。
classもものであり、同じclassに属するclassの集まりがある。
空とはすべてのclassの集まり。white class?
わたしが空数学を考えるとこのような感じのclass論になる。個人的な見解なので、これを白数学と呼んで区別しておこう()
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.016s