[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ11 http://rio2016.5ch.net/test/read.cgi/math/1724969804/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
7: 132人目の素数さん [] 2024/08/30(金) 07:19:50.34 ID:cHgt4Zdk つづき 4特異点の定義 ここでは特異点の定義について最低限のことだけを述べておく。詳しくは、[K森,§2.3]を見ていただきたい。極小モデル理論の専門家以外には頭の痛くなる話題であろう。 5非消滅定理 以下の定理がこの章の主定理である。対数的標準対に対する非消滅定理である。 7証明のアイデア ここでは非消滅定理の証明のアイデアについて説明する。 8今後の課題 今回の仕事で、[K森]の2章の後半と3章が完全に一般化されたことになる。 道具である消滅定理が[K森]よりも格段に進歩しているからである。 9勉強の仕方 消滅定理は[F3]がお勧めである。[K森]の消滅定理の証明と全く同じ書き方で書いてある。次に[F6]を読めば極小モデル理論の基本定理(非消滅定理、固定点自由化定理、有理性定理、錐定理)が簡単に学べる。ある意味[K森]の3章より簡単である。消滅定理が強力になったので、川又によるX-論法(広中の特異点解消定理をつかって係数を揺するという有名なテクニック)は不要になったのである。基本定理の証明の途中では広中の特異点解消定理すら必要としなくなったのである。Ambro氏のquasi-logvarietiesの理論に興味がある人には、[F4]をお勧めする。理論の本質的な部分は[F4]で全部理解出来るはずである。技術的な細部まで理解しようとすると、[F5]を読まないと仕方ないであろう。著者の私が言うのもなんだが、[F5]を読むのは大変だと思う。技術的細部に拘りまくったからである。 10おまけ:個人的な考え ここでは、80年代から現在にいたるまで極小モデル理論で重要な位置を占めているX-論法と、最近の新しい議論について個人的な意見を少し書いてみたい。通常の論文などには書かない個人的な印象である。あくまで私の考えである。X-論法の最もすばらしい点は、その強力さにあると思う。広中の特異点解消定理と係数を揺するという小細工をつかうことにより、様々な結果を川又–Viehweg消滅定理の応用として示すことが出来るのである。 最後に少しネタをばらしておく。[F1]と[F2]で対数的標準対に対する評価付きの固定点自由性の問題を扱った。これらは川又対数的末端対に対する結果の完全な焼き直しである。数学的には大した結果ではないと思う。[F1]と[F2]はKoll´ar氏やAngehrn氏とSiu氏の議論の手直しに過ぎない。ただし、[F1]と[F2]での試行錯誤が今回の[F6]につながったので、そういう意味では[F1]と[F2]は私にとっては非常に価値があった。結局のところ、やっぱりいろいろやってみないとダメだな、と改めて思った。以上。 つづく http://rio2016.5ch.net/test/read.cgi/math/1724969804/7
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 995 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s