[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
897(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/07/04(土)20:14 ID:CndtYA/1(2/2) AAS
>>896 補足
<時枝戦略が一見正しいように見える仕掛け>
・時枝戦略が不成立など、高校生でも直観で分かる
・IID 独立同分布なのに、あるm番目の箱のみ的中確率99%などなりようがない
・IID 独立同分布なのに、あるm番目の箱の数を、m番目以外の他の箱を開けて、推測が出来たり、推測の手がかりが得られることはない
・そんなことは、高校生でも分かることだが、ではなぜ当たるように見えるのか? そのトリックは?
・おそらく、可算無限個の箱にトリックがある
1.いま、(例えば100列の)箱の長さがn(個)とする
2.決定番号d (範囲は1<=d<=n) として、dが 範囲 1〜j (j<n) にある確率は、p=j/n である
3.さて、j はある有限の自然数とし、かつ、簡単に分母nは自然数N全体で一様分布とすると、 時枝記事に合わせて n→∞ を考えて、lim n→∞ p (j/n) =0
4.つまり、決定番号dがある有限j 以下である確率は0(その事象が生じないわけではない)
確率は0だが、その事象が生じないわけではない。が、「確率0」だということがなかなか見えない
5.そして、簡単な計算で分かることだが、分母nは自然数N全体を渡るが、一様分布ではなくボトムヘビーの分布になる
6.だから、一見当たるように見えるだけで、実は当たらない(「確率0」が効いている)
(なお、当たらないことの数学的証明は、すでに述べたように、もっと簡単に反例の存在により、すでに示しめしている(>>896など))
(参考)
外部リンク:ja.wikipedia.org
条件付き確率
(抜粋)
B の測度が 0 の場合が問題である。
この方法はボレル-コルモゴロフのパラドックス(英語版)が生じる。
901: 2020/07/04(土)20:35 ID:1EH0+MbP(4/7) AAS
>>897
>・時枝戦略が不成立など、高校生でも直観で分かる
直感に反するから大学生でも理解できる簡単な定理なのに数セミ記事になることも分からないアホ
実際大学数学を理解できない直観バカが釣れてるしなw
909(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/07/05(日)22:54 ID:UyE0c9o0(1) AAS
>>897
>あるm番目の箱のみ的中確率99%などなりようがない
あるmは、∃m
まあ
あるm番目の箱のみ的中確率99%などなりようがない
↓
あるm番目の箱があって、その箱の数が的中確率99%などなりようがない
とでも書けば良いのかい?(^^;
(参考)
外部リンク:ja.wikipedia.org
量化子の記法
全称量化子は "A" を逆さにした "∀" で記述され、これは "all" に由来する。存在量化子は "E" を裏返しにした "∃" で記述され、これは "exists" に由来する。これを使った量化式は次のようになる。
∃xP ∀xP
ここで、"P" は何らかの(論理)式を表す。他にも様々な表記方法がある。
歴史
ジュゼッペ・ペアノは、全称量化を (x) と記した。"(x)φ" は、x のあらゆる値について、式 φ が真であることを意味する。
また彼は1897年に、存在量化を表す記法として (∃x) を採用した。
アルフレッド・ノース・ホワイトヘッドとバートランド・ラッセルの『数学原理』Principia Mathematica ではペアノの記法が採用されている。
また、ウィラード・ヴァン・オーマン・クワインとアロンゾ・チャーチも生涯を通じて、ペアノの記法を使用した。ゲルハルト・ゲンツェンは1935年、ペアノの ∃ 記号からの類推で ∀ 記号を導入した。
しかし、∀ が一般に浸透したのは1950年代になってからである。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.082s